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Preface

This manuscript attempts to provide the reader with an insight in arti�cial neural networks.

Back in 1990, the absence of any state-of-the-art textbook forced us into writing our own.

However, in the meantime a number of worthwhile textbooks have been published which can

be used for background and in-depth information. We are aware of the fact that, at times, this

manuscript may prove to be too thorough or not thorough enough for a complete understanding

of the material; therefore, further reading material can be found in some excellent text books

such as (Hertz, Krogh, & Palmer, 1991; Ritter, Martinetz, & Schulten, 1990; Kohonen, 1995;

Anderson & Rosenfeld, 1988; DARPA, 1988; McClelland & Rumelhart, 1986; Rumelhart &

McClelland, 1986).

Some of the material in this book, especially parts III and IV, contains timely material and

thus may heavily change throughout the ages. The choice of describing robotics and vision as

neural network applications coincides with the neural network research interests of the authors.

Much of the material presented in chapter 6 has been written by Joris van Dam and Anuj Dev

at the University of Amsterdam. Also, Anuj contributed to material in chapter 9. The basis of

chapter 7 was form by a report of Gerard Schram at the University of Amsterdam. Furthermore,

we express our gratitude to those people out there in Net-Land who gave us feedback on this

manuscript, especially Michiel van der Korst and Nicolas Maudit who pointed out quite a few

of our goof-ups. We owe them many kwartjes for their help.

The seventh edition is not drastically di�erent from the sixth one; we corrected some typing

errors, added some examples and deleted some obscure parts of the text. In the eighth edition,

symbols used in the text have been globally changed. Also, the chapter on recurrent networks

has been (albeit marginally) updated. The index still requires an update, though.

Amsterdam/Oberpfa�enhofen, November 1996

Patrick van der Smagt

Ben Kr�ose
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1 Introduction

A �rst wave of interest in neural networks (also known as `connectionist models' or `parallel

distributed processing') emerged after the introduction of simpli�ed neurons by McCulloch and

Pitts in 1943 (McCulloch & Pitts, 1943). These neurons were presented as models of biological

neurons and as conceptual components for circuits that could perform computational tasks.

When Minsky and Papert published their book Perceptrons in 1969 (Minsky & Papert, 1969)

in which they showed the de�ciencies of perceptron models, most neural network funding was

redirected and researchers left the �eld. Only a few researchers continued their e�orts, most

notably Teuvo Kohonen, Stephen Grossberg, James Anderson, and Kunihiko Fukushima.

The interest in neural networks re-emerged only after some important theoretical results were

attained in the early eighties (most notably the discovery of error back-propagation), and new

hardware developments increased the processing capacities. This renewed interest is re
ected

in the number of scientists, the amounts of funding, the number of large conferences, and the

number of journals associated with neural networks. Nowadays most universities have a neural

networks group, within their psychology, physics, computer science, or biology departments.

Arti�cial neural networks can be most adequately characterised as `computational models'

with particular properties such as the ability to adapt or learn, to generalise, or to cluster or

organise data, and which operation is based on parallel processing. However, many of the above-

mentioned properties can be attributed to existing (non-neural) models; the intriguing question

is to which extent the neural approach proves to be better suited for certain applications than

existing models. To date an equivocal answer to this question is not found.

Often parallels with biological systems are described. However, there is still so little known

(even at the lowest cell level) about biological systems, that the models we are using for our

arti�cial neural systems seem to introduce an oversimpli�cation of the `biological' models.

In this course we give an introduction to arti�cial neural networks. The point of view we

take is that of a computer scientist. We are not concerned with the psychological implication of

the networks, and we will at most occasionally refer to biological neural models. We consider

neural networks as an alternative computational scheme rather than anything else.

These lecture notes start with a chapter in which a number of fundamental properties are

discussed. In chapter 3 a number of `classical' approaches are described, as well as the discussion

on their limitations which took place in the early sixties. Chapter 4 continues with the descrip-

tion of attempts to overcome these limitations and introduces the back-propagation learning

algorithm. Chapter 5 discusses recurrent networks; in these networks, the restraint that there

are no cycles in the network graph is removed. Self-organising networks, which require no exter-

nal teacher, are discussed in chapter 6. Then, in chapter 7 reinforcement learning is introduced.

Chapters 8 and 9 focus on applications of neural networks in the �elds of robotics and image

processing respectively. The �nal chapters discuss implementational aspects.
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2 Fundamentals

The arti�cial neural networks which we describe in this course are all variations on the parallel

distributed processing (PDP) idea. The architecture of each network is based on very similar

building blocks which perform the processing. In this chapter we �rst discuss these processing

units and discuss di�erent network topologies. Learning strategies|as a basis for an adaptive

system|will be presented in the last section.

2.1 A framework for distributed representation

An arti�cial network consists of a pool of simple processing units which communicate by sending

signals to each other over a large number of weighted connections.

A set of major aspects of a parallel distributed model can be distinguished (cf. Rumelhart

and McClelland, 1986 (McClelland & Rumelhart, 1986; Rumelhart & McClelland, 1986)):

� a set of processing units (`neurons,' `cells');

� a state of activation yk for every unit, which equivalent to the output of the unit;

� connections between the units. Generally each connection is de�ned by a weight wjk which

determines the e�ect which the signal of unit j has on unit k;

� a propagation rule, which determines the e�ective input sk of a unit from its external

inputs;

� an activation function Fk, which determines the new level of activation based on the

e�ective input sk(t) and the current activation yk(t) (i.e., the update);

� an external input (aka bias, o�set) �k for each unit;

� a method for information gathering (the learning rule);

� an environment within which the system must operate, providing input signals and|if

necessary|error signals.

Figure 2.1 illustrates these basics, some of which will be discussed in the next sections.

2.1.1 Processing units

Each unit performs a relatively simple job: receive input from neighbours or external sources

and use this to compute an output signal which is propagated to other units. Apart from this

processing, a second task is the adjustment of the weights. The system is inherently parallel in

the sense that many units can carry out their computations at the same time.

Within neural systems it is useful to distinguish three types of units: input units (indicated

by an index i) which receive data from outside the neural network, output units (indicated by

15
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wjk

�k

w

w

w

Fksk =
P

j wjkyj
yk

yj

+�k

k

j

Figure 2.1: The basic components of an arti�cial neural network. The propagation rule used here is

the `standard' weighted summation.

an index o) which send data out of the neural network, and hidden units (indicated by an index

h) whose input and output signals remain within the neural network.

During operation, units can be updated either synchronously or asynchronously. With syn-

chronous updating, all units update their activation simultaneously; with asynchronous updat-

ing, each unit has a (usually �xed) probability of updating its activation at a time t, and usually

only one unit will be able to do this at a time. In some cases the latter model has some

advantages.

2.1.2 Connections between units

In most cases we assume that each unit provides an additive contribution to the input of the

unit with which it is connected. The total input to unit k is simply the weighted sum of the

separate outputs from each of the connected units plus a bias or o�set term �k:

sk(t) =
X
j

wjk(t) yj(t) + �k(t): (2.1)

The contribution for positive wjk is considered as an excitation and for negative wjk as inhibition.

In some cases more complex rules for combining inputs are used, in which a distinction is made

between excitatory and inhibitory inputs. We call units with a propagation rule (2.1) sigma

units.

A di�erent propagation rule, introduced by Feldman and Ballard (Feldman & Ballard, 1982),

is known as the propagation rule for the sigma-pi unit:

sk(t) =
X
j

wjk(t)
Y
m

yjm(t) + �k(t): (2.2)

Often, the yjm are weighted before multiplication. Although these units are not frequently used,

they have their value for gating of input, as well as implementation of lookup tables (Mel, 1990).

2.1.3 Activation and output rules

We also need a rule which gives the e�ect of the total input on the activation of the unit. We need

a function Fk which takes the total input sk(t) and the current activation yk(t) and produces a

new value of the activation of the unit k:

yk(t+ 1) = Fk(yk(t); sk(t)): (2.3)
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Often, the activation function is a nondecreasing function of the total input of the unit:

yk(t+ 1) = Fk(sk(t)) = Fk
0
@X

j

wjk(t) yj(t) + �k(t)

1
A
; (2.4)

although activation functions are not restricted to nondecreasing functions. Generally, some sort

of threshold function is used: a hard limiting threshold function (a sgn function), or a linear or

semi-linear function, or a smoothly limiting threshold (see �gure 2.2). For this smoothly limiting

function often a sigmoid (S-shaped) function like

yk = F(sk) =
1

1 + e
�s

k

(2.5)

is used. In some applications a hyperbolic tangent is used, yielding output values in the range

[�1;+1].

sigmoidsgn semi-linear
ii i

Figure 2.2: Various activation functions for a unit.

In some cases, the output of a unit can be a stochastic function of the total input of the

unit. In that case the activation is not deterministically determined by the neuron input, but

the neuron input determines the probability p that a neuron get a high activation value:

p(yk  1) =
1

1 + e
�s

k
=T
; (2.6)

in which T (cf. temperature) is a parameter which determines the slope of the probability

function. This type of unit will be discussed more extensively in chapter 5.

In all networks we describe we consider the output of a neuron to be identical to its activation

level.

2.2 Network topologies

In the previous section we discussed the properties of the basic processing unit in an arti�cial

neural network. This section focuses on the pattern of connections between the units and the

propagation of data.

As for this pattern of connections, the main distinction we can make is between:

� Feed-forward networks, where the data 
ow from input to output units is strictly feed-

forward. The data processing can extend over multiple (layers of) units, but no feedback

connections are present, that is, connections extending from outputs of units to inputs of

units in the same layer or previous layers.

� Recurrent networks that do contain feedback connections. Contrary to feed-forward net-

works, the dynamical properties of the network are important. In some cases, the activa-

tion values of the units undergo a relaxation process such that the network will evolve to

a stable state in which these activations do not change anymore. In other applications,

the change of the activation values of the output neurons are signi�cant, such that the

dynamical behaviour constitutes the output of the network (Pearlmutter, 1990).



18 CHAPTER 2. FUNDAMENTALS

Classical examples of feed-forward networks are the Perceptron and Adaline, which will be

discussed in the next chapter. Examples of recurrent networks have been presented by Anderson

(Anderson, 1977), Kohonen (Kohonen, 1977), and Hop�eld (Hop�eld, 1982) and will be discussed

in chapter 5.

2.3 Training of arti�cial neural networks

A neural network has to be con�gured such that the application of a set of inputs produces

(either `direct' or via a relaxation process) the desired set of outputs. Various methods to set

the strengths of the connections exist. One way is to set the weights explicitly, using a priori

knowledge. Another way is to `train' the neural network by feeding it teaching patterns and

letting it change its weights according to some learning rule.

2.3.1 Paradigms of learning

We can categorise the learning situations in two distinct sorts. These are:

� Supervised learning or Associative learning in which the network is trained by providing

it with input and matching output patterns. These input-output pairs can be provided by

an external teacher, or by the system which contains the network (self-supervised).

� Unsupervised learning or Self-organisation in which an (output) unit is trained to respond

to clusters of pattern within the input. In this paradigm the system is supposed to dis-

cover statistically salient features of the input population. Unlike the supervised learning

paradigm, there is no a priori set of categories into which the patterns are to be classi�ed;

rather the system must develop its own representation of the input stimuli.

2.3.2 Modifying patterns of connectivity

Both learning paradigms discussed above result in an adjustment of the weights of the connec-

tions between units, according to some modi�cation rule. Virtually all learning rules for models

of this type can be considered as a variant of the Hebbian learning rule suggested by Hebb in

his classic book Organization of Behaviour (1949) (Hebb, 1949). The basic idea is that if two

units j and k are active simultaneously, their interconnection must be strengthened. If j receives

input from k, the simplest version of Hebbian learning prescribes to modify the weight wjk with

�wjk = 
yjyk; (2.7)

where 
 is a positive constant of proportionality representing the learning rate. Another common

rule uses not the actual activation of unit k but the di�erence between the actual and desired

activation for adjusting the weights:

�wjk = 
yj(dk � yk); (2.8)

in which dk is the desired activation provided by a teacher. This is often called the Widrow-Ho�

rule or the delta rule, and will be discussed in the next chapter.

Many variants (often very exotic ones) have been published the last few years. In the next

chapters some of these update rules will be discussed.

2.4 Notation and terminology

Throughout the years researchers from di�erent disciplines have come up with a vast number of

terms applicable in the �eld of neural networks. Our computer scientist point-of-view enables

us to adhere to a subset of the terminology which is less biologically inspired, yet still con
icts

arise. Our conventions are discussed below.
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2.4.1 Notation

We use the following notation in our formulae. Note that not all symbols are meaningful for all

networks, and that in some cases subscripts or superscripts may be left out (e.g., p is often not

necessary) or added (e.g., vectors can, contrariwise to the notation below, have indices) where

necessary. Vectors are indicated with a bold non-slanted font:

j, k, : : : the unit j, k, : : :;

i an input unit;

h a hidden unit;

o an output unit;

x
p the pth input pattern vector;

x

p
j the jth element of the pth input pattern vector;

s
p the input to a set of neurons when input pattern vector p is clamped (i.e., presented to the

network); often: the input of the network by clamping input pattern vector p;

d
p the desired output of the network when input pattern vector p was input to the network;

d

p
j the jth element of the desired output of the network when input pattern vector p was input

to the network;

y
p the activation values of the network when input pattern vector p was input to the network;

y

p
j the activation values of element j of the network when input pattern vector p was input to

the network;

W the matrix of connection weights;

wj the weights of the connections which feed into unit j;

wjk the weight of the connection from unit j to unit k;

Fj the activation function associated with unit j;


jk the learning rate associated with weight wjk;

� the biases to the units;

�j the bias input to unit j;

Uj the threshold of unit j in Fj ;

E
p the error in the output of the network when input pattern vector p is input;

E the energy of the network.

2.4.2 Terminology

Output vs. activation of a unit. Since there is no need to do otherwise, we consider the

output and the activation value of a unit to be one and the same thing. That is, the output of

each neuron equals its activation value.
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Bias, o�set, threshold. These terms all refer to a constant (i.e., independent of the network

input but adapted by the learning rule) term which is input to a unit. They may be used

interchangeably, although the latter two terms are often envisaged as a property of the activation

function. Furthermore, this external input is usually implemented (and can be written) as a

weight from a unit with activation value 1.

Number of layers. In a feed-forward network, the inputs perform no computation and their

layer is therefore not counted. Thus a network with one input layer, one hidden layer, and one

output layer is referred to as a network with two layers. This convention is widely though not

yet universally used.

Representation vs. learning. When using a neural network one has to distinguish two issues

which in
uence the performance of the system. The �rst one is the representational power of

the network, the second one is the learning algorithm.

The representational power of a neural network refers to the ability of a neural network to

represent a desired function. Because a neural network is built from a set of standard functions,

in most cases the network will only approximate the desired function, and even for an optimal

set of weights the approximation error is not zero.

The second issue is the learning algorithm. Given that there exist a set of optimal weights

in the network, is there a procedure to (iteratively) �nd this set of weights?
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3 Perceptron and Adaline

This chapter describes single layer neural networks, including some of the classical approaches

to the neural computing and learning problem. In the �rst part of this chapter we discuss the

representational power of the single layer networks and their learning algorithms and will give

some examples of using the networks. In the second part we will discuss the representational

limitations of single layer networks.

Two `classical' models will be described in the �rst part of the chapter: the Perceptron,

proposed by Rosenblatt (Rosenblatt, 1959) in the late 50's and the Adaline, presented in the

early 60's by by Widrow and Ho� (Widrow & Ho�, 1960).

3.1 Networks with threshold activation functions

A single layer feed-forward network consists of one or more output neurons o, each of which is

connected with a weighting factor wio to all of the inputs i. In the simplest case the network

has only two inputs and a single output, as sketched in �gure 3.1 (we leave the output index o

out). The input of the neuron is the weighted sum of the inputs plus the bias term. The output

w1

w2
�

y

+1

x1

x2

Figure 3.1: Single layer network with one output and two inputs.

of the network is formed by the activation of the output neuron, which is some function of the

input:

y = F
 

2X
i=1

wixi + �

!
; (3.1)

The activation function F can be linear so that we have a linear network, or nonlinear. In this

section we consider the threshold (or Heaviside or sgn) function:

F(s) =
�
1 if s > 0

�1 otherwise.
(3.2)

The output of the network thus is either +1 or �1, depending on the input. The network

can now be used for a classi�cation task: it can decide whether an input pattern belongs to

one of two classes. If the total input is positive, the pattern will be assigned to class +1, if the

23
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total input is negative, the sample will be assigned to class �1. The separation between the two

classes in this case is a straight line, given by the equation:

w1x1 + w2x2 + � = 0 (3.3)

The single layer network represents a linear discriminant function.

A geometrical representation of the linear threshold neural network is given in �gure 3.2.

Equation (3.3) can be written as

x2 = �
w1

w2
x1 �

�

w2
; (3.4)

and we see that the weights determine the slope of the line and the bias determines the `o�set',

i.e. how far the line is from the origin. Note that also the weights can be plotted in the input

space: the weight vector is always perpendicular to the discriminant function.

x2

x1

w1

w2

��
kwk

Figure 3.2: Geometric representation of the discriminant function and the weights.

Now that we have shown the representational power of the single layer network with linear

threshold units, we come to the second issue: how do we learn the weights and biases in the

network? We will describe two learning methods for these types of networks: the `perceptron'

learning rule and the `delta' or `LMS' rule. Both methods are iterative procedures that adjust

the weights. A learning sample is presented to the network. For each weight the new value is

computed by adding a correction to the old value. The threshold is updated in a same way:

wi(t+ 1) = wi(t) + �wi(t); (3.5)

�(t+ 1) = �(t) + ��(t): (3.6)

The learning problem can now be formulated as: how do we compute �wi(t) and ��(t) in order

to classify the learning patterns correctly?

3.2 Perceptron learning rule and convergence theorem

Suppose we have a set of learning samples consisting of an input vector x and a desired output

d(x). For a classi�cation task the d(x) is usually +1 or �1. The perceptron learning rule is very
simple and can be stated as follows:

1. Start with random weights for the connections;

2. Select an input vector x from the set of training samples;

3. If y 6= d(x) (the perceptron gives an incorrect response), modify all connections wi accord-

ing to: �wi = d(x)xi;
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4. Go back to 2.

Note that the procedure is very similar to the Hebb rule; the only di�erence is that, when the

network responds correctly, no connection weights are modi�ed. Besides modifying the weights,

we must also modify the threshold �. This � is considered as a connection w0 between the output

neuron and a `dummy' predicate unit which is always on: x0 = 1. Given the perceptron learning

rule as stated above, this threshold is modi�ed according to:

�� =

�
0 if the perceptron responds correctly;

d(x) otherwise.
(3.7)

3.2.1 Example of the Perceptron learning rule

A perceptron is initialized with the following weights: w1 = 1; w2 = 2; � = �2. The perceptron
learning rule is used to learn a correct discriminant function for a number of samples, sketched in

�gure 3.3. The �rst sample A, with values x = (0:5; 1:5) and target value d(x) = +1 is presented

to the network. From eq. (3.1) it can be calculated that the network output is +1, so no weights

are adjusted. The same is the case for point B, with values x = (�0:5; 0:5) and target value

d(x) = �1; the network output is negative, so no change. When presenting point C with values

x = (0:5; 0:5) the network output will be �1, while the target value d(x) = +1. According to

the perceptron learning rule, the weight changes are: �w1 = 0:5, �w2 = 0:5, �� = 1. The new

weights are now: w1 = 1:5, w2 = 2:5, � = �1, and sample C is classi�ed correctly.

In �gure 3.3 the discriminant function before and after this weight update is shown.

original discriminant function
after weight update

C

A

B

1 2

1

2

x1

x2

Figure 3.3: Discriminant function before and after weight update.

3.2.2 Convergence theorem

For the perceptron learning rule there exists a convergence theorem, which states the following:

Theorem 1 If there exists a set of connection weights w� which is able to perform the transfor-

mation y = d(x), the perceptron learning rule will converge to some solution (which may or may

not be the same as w�) in a �nite number of steps for any initial choice of the weights.

Proof Given the fact that the length of the vector w� does not play a role (because of the sgn

operation), we take kw�k = 1. Because w� is a correct solution, the value jw� � xj, where �
denotes dot or inner product, will be greater than 0 or: there exists a � > 0 such that jw� � xj > �

for all inputs x1. Now de�ne cos� � w �w�
=kwk. When according to the perceptron learning

1Technically this need not to be true for any w�; w�
� x could in fact be equal to 0 for a w� which yields no

misclassi�cations (look at de�nition of F). However, another w� can be found for which the quantity will not be

0. (Thanks to: Terry Regier, Computer Science, UC Berkeley)
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rule, connection weights are modi�ed at a given input x, we know that �w = d(x)x, and the

weight after modi�cation is w0 =w +�w. From this it follows that:

w
0 �w� = w �w� + d(x) �w� � x

= w �w� + sgn
�
w
� � x�w� � x

> w �w� + �

kw0k2 = kw + d(x) xk2
= w

2 + 2d(x)w � x + x2

< w
2 + x2 (because d(x) = � sgn[w � x] !!)

= w
2 +M:

After t modi�cations we have:

w(t) �w�
> w �w� + t�

kw(t)k2 < w
2 + tM

such that

cos�(t) =
w
� �w(t)

kw(t)k
>

w
� �w + t�p
w

2 + tM
:

From this follows that limt!1 cos�(t) = limt!1
�p
M

p
t =1, while by de�nition cos� � 1 !

The conclusion is that there must be an upper limit tmax for t. The system modi�es its

connections only a limited number of times. In other words: after maximally tmax modi�cations

of the weights the perceptron is correctly performing the mapping. tmax will be reached when

cos� = 1. If we start with connections w = 0,

tmax =
M

�2
: (3.8)

3.2.3 The original Perceptron

The Perceptron, proposed by Rosenblatt (Rosenblatt, 1959) is somewhat more complex than a

single layer network with threshold activation functions. In its simplest form it consist of an

N -element input layer (`retina') which feeds into a layer ofM `association,' `mask,' or `predicate'

units �h, and a single output unit. The goal of the operation of the perceptron is to learn a given

transformation d : f�1; 1gN ! f�1; 1g using learning samples with input x and corresponding

output y = d(x). In the original de�nition, the activity of the predicate units can be any function

�h of the input layer x but the learning procedure only adjusts the connections to the output

unit. The reason for this is that no recipe had been found to adjust the connections between

x and �h. Depending on the functions �h, perceptrons can be grouped into di�erent families.

In (Minsky & Papert, 1969) a number of these families are described and properties of these

families have been described. The output unit of a perceptron is a linear threshold element.

Rosenblatt (1959) (Rosenblatt, 1959) proved the remarkable theorem about perceptron learning

and in the early 60s perceptrons created a great deal of interest and optimism. The initial

euphoria was replaced by disillusion after the publication of Minsky and Papert's Perceptrons

in 1969 (Minsky & Papert, 1969). In this book they analysed the perceptron thoroughly and

proved that there are severe restrictions on what perceptrons can represent.
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1

nφ

φ

Ψ
Ω

Figure 3.4: The Perceptron.

3.3 The adaptive linear element (Adaline)

An important generalisation of the perceptron training algorithm was presented by Widrow and

Ho� as the `least mean square' (LMS) learning procedure, also known as the delta rule. The

main functional di�erence with the perceptron training rule is the way the output of the system is

used in the learning rule. The perceptron learning rule uses the output of the threshold function

(either �1 or +1) for learning. The delta-rule uses the net output without further mapping into
output values �1 or +1.

The learning rule was applied to the `adaptive linear element,' also named Adaline
2, devel-

oped by Widrow and Ho� (Widrow & Ho�, 1960). In a simple physical implementation (�g. 3.5)

this device consists of a set of controllable resistors connected to a circuit which can sum up

currents caused by the input voltage signals. Usually the central block, the summer, is also

followed by a quantiser which outputs either +1 of �1, depending on the polarity of the sum.

w

w

w w

Σ

Σ

01

2

3

+

− −1

+1

−1 +1

−1 +1

+1

error
summer

gains

switches
pattern
input

level

output

quantizer

switch
reference

Figure 3.5: The Adaline.

Although the adaptive process is here exempli�ed in a case when there is only one output,

it may be clear that a system with many parallel outputs is directly implementable by multiple

units of the above kind.

If the input conductances are denoted by wi, i = 0; 1; : : : ; n, and the input and output signals

2ADALINE �rst stood for ADAptive LInear NEuron, but when arti�cial neurons became less and less popular

this acronym was changed to ADAptive LINear Element.
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by xi and y, respectively, then the output of the central block is de�ned to be

y =

nX
i=1

wixi + �; (3.9)

where � � w0. The purpose of this device is to yield a given value y = d
p at its output when

the set of values x
p
i , i = 1; 2; : : : ; n, is applied at the inputs. The problem is to determine the

coe�cients wi, i = 0; 1; : : : ; n, in such a way that the input-output response is correct for a large

number of arbitrarily chosen signal sets. If an exact mapping is not possible, the average error

must be minimised, for instance, in the sense of least squares. An adaptive operation means

that there exists a mechanism by which the wi can be adjusted, usually iteratively, to attain the

correct values. For the Adaline, Widrow introduced the delta rule to adjust the weights. This

rule will be discussed in section 3.4.

3.4 Networks with linear activation functions: the delta rule

For a single layer network with an output unit with a linear activation function the output is

simply given by

y =
X
j

wjxj + �: (3.10)

Such a simple network is able to represent a linear relationship between the value of the

output unit and the value of the input units. By thresholding the output value, a classi�er can

be constructed (such as Widrow's Adaline), but here we focus on the linear relationship and use

the network for a function approximation task. In high dimensional input spaces the network

represents a (hyper)plane and it will be clear that also multiple output units may be de�ned.

Suppose we want to train the network such that a hyperplane is �tted as well as possible

to a set of training samples consisting of input values xp and desired (or target) output values

d
p. For every given input sample, the output of the network di�ers from the target value dp

by (dp � y
p), where yp is the actual output for this pattern. The delta-rule now uses a cost- or

error-function based on these di�erences to adjust the weights.

The error function, as indicated by the name least mean square, is the summed squared

error. That is, the total error E is de�ned to be

E =
X
p

E
p = 1

2

X
p

(dp � y
p)2; (3.11)

where the index p ranges over the set of input patterns and E
p represents the error on pattern

p. The LMS procedure �nds the values of all the weights that minimise the error function by a

method called gradient descent. The idea is to make a change in the weight proportional to the

negative of the derivative of the error as measured on the current pattern with respect to each

weight:

�pwj = �
@E
p

@wj
(3.12)

where 
 is a constant of proportionality. The derivative is

@E
p

@wj
=
@E

p

@y
p

@y
p

@wj
: (3.13)

Because of the linear units (eq. (3.10)),

@y
p

@wj
= xj (3.14)



3.5. EXCLUSIVE-OR PROBLEM 29

and
@E

p

@y
p
= �(dp � y

p) (3.15)

such that

�pwj = 
�
p
xj (3.16)

where �p = d
p�yp is the di�erence between the target output and the actual output for pattern

p.

The delta rule modi�es weight appropriately for target and actual outputs of either polarity

and for both continuous and binary input and output units. These characteristics have opened

up a wealth of new applications.

3.5 Exclusive-OR problem

In the previous sections we have discussed two learning algorithms for single layer networks, but

we have not discussed the limitations on the representation of these networks.

x0 x1 d

�1 �1 �1
�1 1 1

1 �1 1

1 1 �1

Table 3.1: Exclusive-or truth table.

One of Minsky and Papert's most discouraging results shows that a single layer percep-

tron cannot represent a simple exclusive-or function. Table 3.1 shows the desired relationships

between inputs and output units for this function.

In a simple network with two inputs and one output, as depicted in �gure 3.1, the net input

is equal to:

s = w1x1 + w2x2 + �: (3.17)

According to eq. (3.1), the output of the perceptron is zero when s is negative and equal to

one when s is positive. In �gure 3.6 a geometrical representation of the input domain is given.

For a constant �, the output of the perceptron is equal to one on one side of the dividing line

which is de�ned by:

w1x1 + w2x2 = �� (3.18)

and equal to zero on the other side of this line.

?

(−1,−1)

(−1,1)

AND

(1,1)

(1,−1)

?

XOROR

x1

x2 x2 x2

x1 x1

Figure 3.6: Geometric representation of input space.
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To see that such a solution cannot be found, take a loot at �gure 3.6. The input space consists

of four points, and the two solid circles at (1;�1) and (�1; 1) cannot be separated by a straight

line from the two open circles at (�1;�1) and (1; 1). The obvious question to ask is: How can

this problem be overcome? Minsky and Papert prove in their book that for binary inputs, any

transformation can be carried out by adding a layer of predicates which are connected to all

inputs. The proof is given in the next section.

For the speci�c XOR problem we geometrically show that by introducing hidden units,

thereby extending the network to a multi-layer perceptron, the problem can be solved. Fig. 3.7a

demonstrates that the four input points are now embedded in a three-dimensional space de�ned

by the two inputs plus the single hidden unit. These four points are now easily separated by

−2

1

1

−0.5

(1,1,1)

(-1,-1,-1)

1

1
−0.5

a. b.

Figure 3.7: Solution of the XOR problem.

a) The perceptron of �g. 3.1 with an extra hidden unit. With the indicated values of the

weights wij (next to the connecting lines) and the thresholds �i (in the circles) this perceptron

solves the XOR problem. b) This is accomplished by mapping the four points of �gure 3.6

onto the four points indicated here; clearly, separation (by a linear manifold) into the required

groups is now possible.

a linear manifold (plane) into two groups, as desired. This simple example demonstrates that

adding hidden units increases the class of problems that are soluble by feed-forward, perceptron-

like networks. However, by this generalisation of the basic architecture we have also incurred a

serious loss: we no longer have a learning rule to determine the optimal weights!

3.6 Multi-layer perceptrons can do everything

In the previous section we showed that by adding an extra hidden unit, the XOR problem

can be solved. For binary units, one can prove that this architecture is able to perform any

transformation given the correct connections and weights. The most primitive is the next one.

For a given transformation y = d(x), we can divide the set of all possible input vectors into two

classes:

X
+ = f x j d(x) = 1 g and X

� = f x j d(x) = �1 g: (3.19)

Since there are N input units, the total number of possible input vectors x is 2N . For every

x
p 2 X+ a hidden unit h can be reserved of which the activation yh is 1 if and only if the speci�c

pattern p is present at the input: we can choose its weights wih equal to the speci�c pattern xp

and the bias �h equal to 1�N such that

y

p
h = sgn

 X
i

wihx
p
i �N + 1

2

!
(3.20)
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is equal to 1 for xp = wh only. Similarly, the weights to the output neuron can be chosen such

that the output is one as soon as one of the M predicate neurons is one:

y
p
o = sgn

 
MX
h=1

yh +M � 1
2

!
: (3.21)

This perceptron will give yo = 1 only if x 2 X
+: it performs the desired mapping. The

problem is the large number of predicate units, which is equal to the number of patterns in X+,

which is maximally 2N . Of course we can do the same trick for X�, and we will always take

the minimal number of mask units, which is maximally 2N�1. A more elegant proof is given

in (Minsky & Papert, 1969), but the point is that for complex transformations the number of

required units in the hidden layer is exponential in N .

3.7 Conclusions

In this chapter we presented single layer feedforward networks for classi�cation tasks and for

function approximation tasks. The representational power of single layer feedforward networks

was discussed and two learning algorithms for �nding the optimal weights were presented. The

simple networks presented here have their advantages and disadvantages. The disadvantage

is the limited representational power: only linear classi�ers can be constructed or, in case of

function approximation, only linear functions can be represented. The advantage, however, is

that because of the linearity of the system, the training algorithm will converge to the optimal

solution. This is not the case anymore for nonlinear systems such as multiple layer networks, as

we will see in the next chapter.
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4 Back-Propagation

As we have seen in the previous chapter, a single-layer network has severe restrictions: the class

of tasks that can be accomplished is very limited. In this chapter we will focus on feed-forward

networks with layers of processing units.

Minsky and Papert (Minsky & Papert, 1969) showed in 1969 that a two layer feed-forward

network can overcome many restrictions, but did not present a solution to the problem of how

to adjust the weights from input to hidden units. An answer to this question was presented by

Rumelhart, Hinton and Williams in 1986 (Rumelhart, Hinton, & Williams, 1986), and similar

solutions appeared to have been published earlier (Werbos, 1974; Parker, 1985; Cun, 1985).

The central idea behind this solution is that the errors for the units of the hidden layer are

determined by back-propagating the errors of the units of the output layer. For this reason

the method is often called the back-propagation learning rule. Back-propagation can also be

considered as a generalisation of the delta rule for non-linear activation functions1 and multi-

layer networks.

4.1 Multi-layer feed-forward networks

A feed-forward network has a layered structure. Each layer consists of units which receive their

input from units from a layer directly below and send their output to units in a layer directly

above the unit. There are no connections within a layer. The Ni inputs are fed into the �rst

layer of Nh;1 hidden units. The input units are merely `fan-out' units; no processing takes place

in these units. The activation of a hidden unit is a function Fi of the weighted inputs plus a

bias, as given in in eq. (2.4). The output of the hidden units is distributed over the next layer of

Nh;2 hidden units, until the last layer of hidden units, of which the outputs are fed into a layer

of No output units (see �gure 4.1).

Although back-propagation can be applied to networks with any number of layers, just as

for networks with binary units (section 3.6) it has been shown (Hornik, Stinchcombe, & White,

1989; Funahashi, 1989; Cybenko, 1989; Hartman, Keeler, & Kowalski, 1990) that only one

layer of hidden units su�ces to approximate any function with �nitely many discontinuities to

arbitrary precision, provided the activation functions of the hidden units are non-linear (the

universal approximation theorem). In most applications a feed-forward network with a single

layer of hidden units is used with a sigmoid activation function for the units.

4.2 The generalised delta rule

Since we are now using units with nonlinear activation functions, we have to generalise the delta

rule which was presented in chapter 3 for linear functions to the set of non-linear activation

1Of course, when linear activation functions are used, a multi-layer network is not more powerful than a

single-layer network.

33
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oh

No

Nh;l�2Nh;l�1Nh;1

Ni

Figure 4.1: A multi-layer network with l layers of units.

functions. The activation is a di�erentiable function of the total input, given by

y

p
k = F(spk); (4.1)

in which

s

p
k =

X
j

wjky
p
j + �k: (4.2)

To get the correct generalisation of the delta rule as presented in the previous chapter, we must

set

�pwjk = �

@E

p

@wjk
: (4.3)

The error measure Ep is de�ned as the total quadratic error for pattern p at the output units:

E
p = 1

2

NoX
o=1

(dpo � y
p
o)

2
; (4.4)

where dpo is the desired output for unit o when pattern p is clamped. We further set E =
X
p

E
p

as the summed squared error. We can write

@E
p

@wjk
=
@E

p

@s

p
k

@s

p
k

@wjk
: (4.5)

By equation (4.2) we see that the second factor is

@s

p
k

@wjk
= y

p
j : (4.6)

When we de�ne

�

p
k = �

@E
p

@s

p
k

; (4.7)

we will get an update rule which is equivalent to the delta rule as described in the previous

chapter, resulting in a gradient descent on the error surface if we make the weight changes

according to:

�pwjk = 
�

p
ky

p
j : (4.8)

The trick is to �gure out what �
p
k should be for each unit k in the network. The interesting

result, which we now derive, is that there is a simple recursive computation of these �'s which

can be implemented by propagating error signals backward through the network.



4.2. THE GENERALISED DELTA RULE 35

To compute �
p
k we apply the chain rule to write this partial derivative as the product of two

factors, one factor re
ecting the change in error as a function of the output of the unit and one

re
ecting the change in the output as a function of changes in the input. Thus, we have

�

p
k = �

@E
p

@s

p
k

= �@E
p

@y

p
k

@y

p
k

@s

p
k

: (4.9)

Let us compute the second factor. By equation (4.1) we see that

@y

p
k

@s

p
k

= F0(spk); (4.10)

which is simply the derivative of the squashing function F for the kth unit, evaluated at the

net input s
p
k to that unit. To compute the �rst factor of equation (4.9), we consider two cases.

First, assume that unit k is an output unit k = o of the network. In this case, it follows from

the de�nition of Ep that
@E

p

@y

p
o
= �(dpo � y

p
o); (4.11)

which is the same result as we obtained with the standard delta rule. Substituting this and

equation (4.10) in equation (4.9), we get

�
p
o = (dpo � y

p
o)Fo0(spo) (4.12)

for any output unit o. Secondly, if k is not an output unit but a hidden unit k = h, we do

not readily know the contribution of the unit to the output error of the network. However,

the error measure can be written as a function of the net inputs from hidden to output layer;

E
p = E

p(s
p
1; s

p
2; : : : ; s

p
j ; : : :) and we use the chain rule to write

@E
p

@y

p
h

=

NoX
o=1

@E
p

@s

p
o

@s
p
o

@y

p
h

=

NoX
o=1

@E
p

@s

p
o

@

@y

p
h

NhX
j=1

wkoy
p
j =

NoX
o=1

@E
p

@s

p
o
who = �

NoX
o=1

�
p
owho: (4.13)

Substituting this in equation (4.9) yields

�

p
h = F0(sph)

NoX
o=1

�
p
owho: (4.14)

Equations (4.12) and (4.14) give a recursive procedure for computing the �'s for all units in

the network, which are then used to compute the weight changes according to equation (4.8).

This procedure constitutes the generalised delta rule for a feed-forward network of non-linear

units.

4.2.1 Understanding back-propagation

The equations derived in the previous section may be mathematically correct, but what do

they actually mean? Is there a way of understanding back-propagation other than reciting the

necessary equations?

The answer is, of course, yes. In fact, the whole back-propagation process is intuitively

very clear. What happens in the above equations is the following. When a learning pattern

is clamped, the activation values are propagated to the output units, and the actual network

output is compared with the desired output values, we usually end up with an error in each of

the output units. Let's call this error eo for a particular output unit o. We have to bring eo to

zero.
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The simplest method to do this is the greedy method: we strive to change the connections

in the neural network in such a way that, next time around, the error eo will be zero for this

particular pattern. We know from the delta rule that, in order to reduce an error, we have to

adapt its incoming weights according to

�who = (do � yo)yh: (4.15)

That's step one. But it alone is not enough: when we only apply this rule, the weights from

input to hidden units are never changed, and we do not have the full representational power

of the feed-forward network as promised by the universal approximation theorem. In order to

adapt the weights from input to hidden units, we again want to apply the delta rule. In this

case, however, we do not have a value for � for the hidden units. This is solved by the chain

rule which does the following: distribute the error of an output unit o to all the hidden units

that is it connected to, weighted by this connection. Di�erently put, a hidden unit h receives a

delta from each output unit o equal to the delta of that output unit weighted with (= multiplied

by) the weight of the connection between those units. In symbols: �h =
P

o �owho. Well, not

exactly: we forgot the activation function of the hidden unit; F0 has to be applied to the delta,

before the back-propagation process can continue.

4.3 Working with back-propagation

The application of the generalised delta rule thus involves two phases: During the �rst phase

the input x is presented and propagated forward through the network to compute the output

values ypo for each output unit. This output is compared with its desired value do, resulting in

an error signal �po for each output unit. The second phase involves a backward pass through

the network during which the error signal is passed to each unit in the network and appropriate

weight changes are calculated.

Weight adjustments with sigmoid activation function. The results from the previous

section can be summarised in three equations:

� The weight of a connection is adjusted by an amount proportional to the product of an

error signal �, on the unit k receiving the input and the output of the unit j sending this

signal along the connection:

�pwjk = 
�

p
ky

p
j : (4.16)

� If the unit is an output unit, the error signal is given by

�
p
o = (dpo � y

p
o)F0(spo): (4.17)

Take as the activation function F the `sigmoid' function as de�ned in chapter 2:

y
p = F(sp) = 1

1 + e
�sp

: (4.18)

In this case the derivative is equal to

F0(sp) =
@

@s
p

1

1 + e
�sp

=
1

(1 + e
�sp)2

(�e�sp)

=
1

(1 + e
�sp)

e
�sp

(1 + e
�sp)

= y
p(1� y

p): (4.19)
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such that the error signal for an output unit can be written as:

�
p
o = (dpo � y

p
o) y

p
o(1� y

p
o): (4.20)

� The error signal for a hidden unit is determined recursively in terms of error signals of the

units to which it directly connects and the weights of those connections. For the sigmoid

activation function:

�

p
h = F0(sph)

NoX
o=1

�
p
owho = y

p
h(1� y

p
h)

NoX
o=1

�
p
owho: (4.21)

Learning rate and momentum. The learning procedure requires that the change in weight

is proportional to @Ep
=@w. True gradient descent requires that in�nitesimal steps are taken. The

constant of proportionality is the learning rate 
. For practical purposes we choose a learning

rate that is as large as possible without leading to oscillation. One way to avoid oscillation

at large 
, is to make the change in weight dependent of the past weight change by adding a

momentum term:

�wjk(t+ 1) = 
�

p
ky

p
j + ��wjk(t); (4.22)

where t indexes the presentation number and � is a constant which determines the e�ect of the

previous weight change.

The role of the momentum term is shown in �gure 4.2. When no momentum term is used,

it takes a long time before the minimum has been reached with a low learning rate, whereas for

high learning rates the minimum is never reached because of the oscillations. When adding the

momentum term, the minimum will be reached faster.

c

b a

Figure 4.2: The descent in weight space. a) for small learning rate; b) for large learning rate: note

the oscillations, and c) with large learning rate and momentum term added.

Learning per pattern. Although, theoretically, the back-propagation algorithm performs

gradient descent on the total error only if the weights are adjusted after the full set of learning

patterns has been presented, more often than not the learning rule is applied to each pattern

separately, i.e., a pattern p is applied, Ep is calculated, and the weights are adapted (p =

1; 2; : : : ; P ). There exists empirical indication that this results in faster convergence. Care has

to be taken, however, with the order in which the patterns are taught. For example, when

using the same sequence over and over again the network may become focused on the �rst few

patterns. This problem can be overcome by using a permuted training method.

4.4 An example

A feed-forward network can be used to approximate a function from examples. Suppose we

have a system (for example a chemical process or a �nancial market) of which we want to know
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the characteristics. The input of the system is given by the two-dimensional vector x and the

output is given by the one-dimensional vector d. We want to estimate the relationship d = f(x)

from 80 examples fxp; dpg as depicted in �gure 4.3 (top left). A feed-forward network was
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Figure 4.3: Example of function approximation with a feedforward network. Top left: The original

learning samples; Top right: The approximation with the network; Bottom left: The function which

generated the learning samples; Bottom right: The error in the approximation.

programmed with two inputs, 10 hidden units with sigmoid activation function and an output

unit with a linear activation function. Check for yourself how equation (4.20) should be adapted

for the linear instead of sigmoid activation function. The network weights are initialized to

small values and the network is trained for 5,000 learning iterations with the back-propagation

training rule, described in the previous section. The relationship between x and d as represented

by the network is shown in �gure 4.3 (top right), while the function which generated the learning

samples is given in �gure 4.3 (bottom left). The approximation error is depicted in �gure 4.3

(bottom right). We see that the error is higher at the edges of the region within which the

learning samples were generated. The network is considerably better at interpolation than

extrapolation.

4.5 Other activation functions

Although sigmoid functions are quite often used as activation functions, other functions can be

used as well. In some cases this leads to a formula which is known from traditional function

approximation theories.

For example, from Fourier analysis it is known that any periodic function can be written as

a in�nite sum of sine and cosine terms (Fourier series):

f(x) =

1X
n=0

(an cosnx+ bn sinnx): (4.23)
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We can rewrite this as a summation of sine terms

f(x) = a0 +

1X
n=1

cn sin(nx+ �n); (4.24)

with cn =
p
(a2n + b

2
n) and �n = arctan(b=a). This can be seen as a feed-forward network with

a single input unit for x; a single output unit for f(x) and hidden units with an activation

function F = sin(s). The factor a0 corresponds with the bias of the output unit, the factors cn
correspond with the weighs from hidden to output unit; the phase factor �n corresponds with

the bias term of the hidden units and the factor n corresponds with the weights between the

input and hidden layer.

The basic di�erence between the Fourier approach and the back-propagation approach is

that the in the Fourier approach the `weights' between the input and the hidden units (these

are the factors n) are �xed integer numbers which are analytically determined, whereas in the

back-propagation approach these weights can take any value and are typically learning using a

learning heuristic.

To illustrate the use of other activation functions we have trained a feed-forward network

with one output unit, four hidden units, and one input with ten patterns drawn from the function

f(x) = sin(2x) sin(x). The result is depicted in Figure 4.4. The same function (albeit with other

learning points) is learned with a network with eight (!) sigmoid hidden units (see �gure 4.5).

From the �gures it is clear that it pays o� to use as much knowledge of the problem at hand as

possible.

2 4 6 8

+1

-0.5

-2-4

Figure 4.4: The periodic function f(x) = sin(2x) sin(x) approximated with sine activation functions.

(Adapted from (Dastani, 1991).)

4.6 De�ciencies of back-propagation

Despite the apparent success of the back-propagation learning algorithm, there are some aspects

which make the algorithm not guaranteed to be universally useful. Most troublesome is the long

training process. This can be a result of a non-optimum learning rate and momentum. A lot of

advanced algorithms based on back-propagation learning have some optimised method to adapt

this learning rate, as will be discussed in the next section. Outright training failures generally

arise from two sources: network paralysis and local minima.

Network paralysis. As the network trains, the weights can be adjusted to very large values.

The total input of a hidden unit or output unit can therefore reach very high (either positive or

negative) values, and because of the sigmoid activation function the unit will have an activation

very close to zero or very close to one. As is clear from equations (4.20) and (4.21), the weight
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2 4 6-4

+1

-1

Figure 4.5: The periodic function f(x) = sin(2x) sin(x) approximated with sigmoid activation func-

tions.

(Adapted from (Dastani, 1991).)

adjustments which are proportional to y
p
k(1� y

p
k) will be close to zero, and the training process

can come to a virtual standstill.

Local minima. The error surface of a complex network is full of hills and valleys. Because

of the gradient descent, the network can get trapped in a local minimum when there is a much

deeper minimum nearby. Probabilistic methods can help to avoid this trap, but they tend to

be slow. Another suggested possibility is to increase the number of hidden units. Although this

will work because of the higher dimensionality of the error space, and the chance to get trapped

is smaller, it appears that there is some upper limit of the number of hidden units which, when

exceeded, again results in the system being trapped in local minima.

4.7 Advanced algorithms

Many researchers have devised improvements of and extensions to the basic back-propagation

algorithm described above. It is too early for a full evaluation: some of these techniques may

prove to be fundamental, others may simply fade away. A few methods are discussed in this

section.

Maybe the most obvious improvement is to replace the rather primitive steepest descent

method with a direction set minimisation method, e.g., conjugate gradient minimisation. Note

that minimisation along a direction u brings the function f at a place where its gradient is

perpendicular to u (otherwise minimisation along u is not complete). Instead of following the

gradient at every step, a set of n directions is constructed which are all conjugate to each other

such that minimisation along one of these directions uj does not spoil the minimisation along one

of the earlier directions ui, i.e., the directions are non-interfering. Thus one minimisation in the

direction of ui su�ces, such that nminimisations in a system with n degrees of freedom bring this

system to a minimum (provided the system is quadratic). This is di�erent from gradient descent,

which directly minimises in the direction of the steepest descent (Press, Flannery, Teukolsky, &

Vetterling, 1986).

Suppose the function to be minimised is approximated by its Taylor series

f(x) = f(p) +
X
i

@f

@xi

����
p

xi +
1
2

X
i;j

@
2
f

@xi@xj

�����
p

xixj + � � �

� 1
2
x
T
Ax� bTx+ c
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where T denotes transpose, and

c � f(p) b � �rf j
p

[A]ij � @
2
f

@xi@xj

�����
p

: (4.25)

A is a symmetric positive de�nite2 n� n matrix, the Hessian of f at p. The gradient of f is

rf = Ax� b; (4.27)

such that a change of x results in a change of the gradient as

�(rf) = A(�x): (4.28)

Now suppose f was minimised along a direction ui to a point where the gradient �gi+1 of f is

perpendicular to ui, i.e.,

u
T
i gi+1 = 0; (4.29)

and a new direction ui+1 is sought. In order to make sure that moving along ui+1 does not spoil

minimisation along ui we require that the gradient of f remain perpendicular to ui, i.e.,

u
T
i gi+2 = 0; (4.30)

otherwise we would once more have to minimise in a direction which has a component of ui.

Combining (4.29) and (4.30), we get

0 = u
T
i (gi+1 � gi+2) = u

T
i �(rf) = u

T
i Aui+1: (4.31)

When eq. (4.31) holds for two vectors ui and ui+1 they are said to be conjugate.

Now, starting at some point p0, the �rst minimisation direction u0 is taken equal to g0 =

�rf(p0), resulting in a new point p1. For i � 0, calculate the directions

ui+1 = gi+1 + 
iui; (4.32)

where 
i is chosen to make uTi Aui�1 = 0 and the successive gradients perpendicular, i.e.,


i =
g
T
i+1gi+1

gTi gi

with gk = �rf jp
k

for all k � 0: (4.33)

Next, calculate pi+2 = pi+1 + �i+1ui+1 where �i+1 is chosen so as to minimise f(pi+2)
3.

It can be shown that the u's thus constructed are all mutually conjugate (e.g., see (Stoer

& Bulirsch, 1980)). The process described above is known as the Fletcher-Reeves method, but

there are many variants which work more or less the same (Hestenes & Stiefel, 1952; Polak,

1971; Powell, 1977).

Although only n iterations are needed for a quadratic system with n degrees of freedom,

due to the fact that we are not minimising quadratic systems, as well as a result of round-o�

errors, the n directions have to be followed several times (see �gure 4.6). Powell introduced

some improvements to correct for behaviour in non-quadratic systems. The resulting cost is

O(n) which is signi�cantly better than the linear convergence4 of steepest descent.

2A matrix A is called positive de�nite if 8y 6= 0,

y
T
Ay > 0: (4.26)

3This is not a trivial problem (see (Press et al., 1986).) However, line minimisation methods exist with

super-linear convergence (see footnote 4).
4A method is said to converge linearly if E i+1 = cE i with c < 1. Methods which converge with a higher power,

i.e., E i+1 = c(E i)
m with m > 1 are called super-linear.
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i

a very slow approximation

gradient

i+1u
u

Figure 4.6: Slow decrease with conjugate gradient in non-quadratic systems. The hills on the left

are very steep, resulting in a large search vector ui. When the quadratic portion is entered the new

search direction is constructed from the previous direction and the gradient, resulting in a spiraling

minimisation. This problem can be overcome by detecting such spiraling minimisations and restarting

the algorithm with u0 = �rf .

Some improvements on back-propagation have been presented based on an independent adap-

tive learning rate parameter for each weight.

Van den Boomgaard and Smeulders (Boomgaard & Smeulders, 1989) show that for a feed-

forward network without hidden units an incremental procedure to �nd the optimal weight

matrix W needs an adjustment of the weights with

�W (t+ 1) = 
(t+ 1) (d(t+ 1)�W (t)x(t+ 1))x(t+ 1); (4.34)

in which 
 is not a constant but an variable (Ni + 1) � (Ni + 1) matrix which depends on the

input vector. By using a priori knowledge about the input signal, the storage requirements for


 can be reduced.

Silva and Almeida (Silva & Almeida, 1990) also show the advantages of an independent step

size for each weight in the network. In their algorithm the learning rate is adapted after every

learning pattern:


jk(t+ 1) =

8<
:

u
jk(t) if
@E(t+1)
@wjk

and
@E(t)
@wjk

have the same signs;

d
jk(t) if
@E(t+1)
@wjk

and
@E(t)
@wjk

have opposite signs.
(4.35)

where u and d are positive constants with values slightly above and below unity, respectively.

The idea is to decrease the learning rate in case of oscillations.

4.8 How good are multi-layer feed-forward networks?

From the example shown in �gure 4.3 is is clear that the approximation of the network is not

perfect. The resulting approximation error is in
uenced by:

1. The learning algorithm and number of iterations. This determines how good the error on

the training set is minimized.
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2. The number of learning samples. This determines how good the training samples represent

the actual function.

3. The number of hidden units. This determines the `expressive power' of the network. For

`smooth' functions only a few number of hidden units are needed, for wildly 
uctuating

functions more hidden units will be needed.

In the previous sections we discussed the learning rules such as back-propagation and the other

gradient based learning algorithms, and the problem of �nding the minimum error. In this

section we particularly address the e�ect of the number of learning samples and the e�ect of the

number of hidden units.

We �rst have to de�ne an adequate error measure. All neural network training algorithms

try to minimize the error of the set of learning samples which are available for training the

network. The average error per learning sample is de�ned as the learning error rate error rate:

E learning =
1

Plearning

PlearningX
p=1

E
p
;

in which E
p is the di�erence between the desired output value and the actual network output

for the learning samples:

E
p = 1

2

NoX
o=1

(dpo � y
p
o)

2
:

This is the error which is measurable during the training process.

It is obvious that the actual error of the network will di�er from the error at the locations of

the training samples. The di�erence between the desired output value and the actual network

output should be integrated over the entire input domain to give a more realistic error measure.

This integral can be estimated if we have a large set of samples: the test set. We now de�ne the

test error rate as the average error of the test set:

E test =
1

Ptest

PtestX
p=1

E
p
:

In the following subsections we will see how these error measures depend on learning set size

and number of hidden units.

4.8.1 The e�ect of the number of learning samples

A simple problem is used as example: a function y = f(x) has to be approximated with a feed-

forward neural network. A neural network is created with an input, 5 hidden units with sigmoid

activation function and a linear output unit. Suppose we have only a small number of learning

samples (e.g., 4) and the networks is trained with these samples. Training is stopped when the

error does not decrease anymore. The original (desired) function is shown in �gure 4.7A as a

dashed line. The learning samples and the approximation of the network are shown in the same

�gure. We see that in this case E learning is small (the network output goes perfectly through the

learning samples) but E test is large: the test error of the network is large. The approximation

obtained from 20 learning samples is shown in �gure 4.7B. The E learning is larger than in the

case of 5 learning samples, but the E test is smaller.

This experiment was carried out with other learning set sizes, where for each learning set size

the experiment was repeated 10 times. The average learning and test error rates as a function

of the learning set size are given in �gure 4.8. Note that the learning error increases with an

increasing learning set size, and the test error decreases with increasing learning set size. A low
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Figure 4.7: E�ect of the learning set size on the generalization. The dashed line gives the desired

function, the learning samples are depicted as circles and the approximation by the network is shown

by the drawn line. 5 hidden units are used. a) 4 learning samples. b) 20 learning samples.

learning error on the (small) learning set is no guarantee for a good network performance! With

increasing number of learning samples the two error rates converge to the same value. This

value depends on the representational power of the network: given the optimal weights, how

good is the approximation. This error depends on the number of hidden units and the activation

function. If the learning error rate does not converge to the test error rate the learning procedure

has not found a global minimum.

number of learning samples

error
rate

test set

learning set

Figure 4.8: E�ect of the learning set size on the error rate. The average error rate and the average

test error rate as a function of the number of learning samples.

4.8.2 The e�ect of the number of hidden units

The same function as in the previous subsection is used, but now the number of hidden units is

varied. The original (desired) function, learning samples and network approximation is shown

in �gure 4.9A for 5 hidden units and in �gure 4.9B for 20 hidden units. The e�ect visible

in �gure 4.9B is called overtraining. The network �ts exactly with the learning samples, but

because of the large number of hidden units the function which is actually represented by the

network is far more wild than the original one. Particularly in case of learning samples which

contain a certain amount of noise (which all real-world data have), the network will `�t the noise'

of the learning samples instead of making a smooth approximation.
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Figure 4.9: E�ect of the number of hidden units on the network performance. The dashed line

gives the desired function, the circles denote the learning samples and the drawn line gives the

approximation by the network. 12 learning samples are used. a) 5 hidden units. b) 20 hidden units.

This example shows that a large number of hidden units leads to a small error on the training

set but not necessarily leads to a small error on the test set. Adding hidden units will always

lead to a reduction of the E learning. However, adding hidden units will �rst lead to a reduction

of the E test, but then lead to an increase of E test. This e�ect is called the peaking e�ect. The

average learning and test error rates as a function of the learning set size are given in �gure 4.10.

error
rate

number of hidden units

learning set

test set

Figure 4.10: The average learning error rate and the average test error rate as a function of the

number of hidden units.

4.9 Applications

Back-propagation has been applied to a wide variety of research applications. Sejnowski and

Rosenberg (1987) (Sejnowski & Rosenberg, 1986) produced a spectacular success with NETtalk,

a system that converts printed English text into highly intelligible speech.

A feed-forward network with one layer of hidden units has been described by Gorman and

Sejnowski (1988) (Gorman & Sejnowski, 1988) as a classi�cation machine for sonar signals.

Another application of a multi-layer feed-forward network with a back-propagation training

algorithm is to learn an unknown function between input and output signals from the presen-
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tation of examples. It is hoped that the network is able to generalise correctly, so that input

values which are not presented as learning patterns will result in correct output values. An

example is the work of Josin (Josin, 1988), who used a two-layer feed-forward network with

back-propagation learning to perform the inverse kinematic transform which is needed by a

robot arm controller (see chapter 8).



5 Recurrent Networks

The learning algorithms discussed in the previous chapter were applied to feed-forward networks:

all data 
ows in a network in which no cycles are present.

But what happens when we introduce a cycle? For instance, we can connect a hidden unit

with itself over a weighted connection, connect hidden units to input units, or even connect all

units with each other. Although, as we know from the previous chapter, the approximational

capabilities of such networks do not increase, we may obtain decreased complexity, network size,

etc. to solve the same problem.

An important question we have to consider is the following: what do we want to learn in

a recurrent network? After all, when one is considering a recurrent network, it is possible to

continue propagating activation values ad in�nitum, or until a stable point (attractor) is reached.

As we will see in the sequel, there exist recurrent network which are attractor based, i.e., the

activation values in the network are repeatedly updated until a stable point is reached after

which the weights are adapted, but there are also recurrent networks where the learning rule

is used after each propagation (where an activation value is transversed over each weight only

once), while external inputs are included in each propagation. In such networks, the recurrent

connections can be regarded as extra inputs to the network (the values of which are computed

by the network itself).

In this chapter recurrent extensions to the feed-forward network introduced in the previous

chapters will be discussed|yet not to exhaustion. The theory of the dynamics of recurrent

networks extends beyond the scope of a one-semester course on neural networks. Yet the basics

of these networks will be discussed.

Subsequently some special recurrent networks will be discussed: the Hop�eld network in

section 5.2, which can be used for the representation of binary patterns; subsequently we touch

upon Boltzmann machines, therewith introducing stochasticity in neural computation.

5.1 The generalised delta-rule in recurrent networks

The back-propagation learning rule, introduced in chapter 4, can be easily used for training

patterns in recurrent networks. Before we will consider this general case, however, we will �rst

describe networks where some of the hidden unit activation values are fed back to an extra set

of input units (the Elman network), or where output values are fed back into hidden units (the

Jordan network).

A typical application of such a network is the following. Suppose we have to construct a

network that must generate a control command depending on an external input, which is a time

series x(t), x(t�1), x(t�2), : : :. With a feed-forward network there are two possible approaches:

1. create inputs x1, x2, : : :, xn which constitute the last n values of the input vector. Thus

a `time window' of the input vector is input to the network.

2. create inputs x, x0, x", : : :. Besides only inputting x(t), we also input its �rst, second, etc.

47
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derivatives. Naturally, computation of these derivatives is not a trivial task for higher-order

derivatives.

The disadvantage is, of course, that the input dimensionality of the feed-forward network is

multiplied with n, leading to a very large network, which is slow and di�cult to train. The

Jordan and Elman networks provide a solution to this problem. Due to the recurrent connections,

a window of inputs need not be input anymore; instead, the network is supposed to learn the

in
uence of the previous time steps itself.

5.1.1 The Jordan network

One of the earliest recurrent neural network was the Jordan network (Jordan, 1986a, 1986b).

An exemplar network is shown in �gure 5.1. In the Jordan network, the activation values of the

oh

input
units

state
units

Figure 5.1: The Jordan network. Output activation values are fed back to the input layer, to a set

of extra neurons called the state units.

output units are fed back into the input layer through a set of extra input units called the state

units. There are as many state units as there are output units in the network. The connections

between the output and state units have a �xed weight of +1; learning takes place only in the

connections between input and hidden units as well as hidden and output units. Thus all the

learning rules derived for the multi-layer perceptron can be used to train this network.

5.1.2 The Elman network

The Elman network was introduced by Elman in 1990 (Elman, 1990). In this network a set of

context units are introduced, which are extra input units whose activation values are fed back

from the hidden units. Thus the network is very similar to the Jordan network, except that

(1) the hidden units instead of the output units are fed back; and (2) the extra input units have

no self-connections.

The schematic structure of this network is shown in �gure 5.2.

Again the hidden units are connected to the context units with a �xed weight of value +1.

Learning is done as follows:

1. the context units are set to 0; t = 1;
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output layer

hidden layer

input layer context layer

Figure 5.2: The Elman network. With this network, the hidden unit activation values are fed back

to the input layer, to a set of extra neurons called the context units.

2. pattern xt is clamped, the forward calculations are performed once;

3. the back-propagation learning rule is applied;

4. t t+ 1; go to 2.

The context units at step t thus always have the activation value of the hidden units at step

t� 1.

Example

As we mentioned above, the Jordan and Elman networks can be used to train a network on

reproducing time sequences. The idea of the recurrent connections is that the network is able to

`remember' the previous states of the input values. As an example, we trained an Elman network

on controlling an object moving in 1D. This object has to follow a pre-speci�ed trajectory xd. To

control the object, forces F must be applied, since the object su�ers from friction and perhaps

other external forces.

To tackle this problem, we use an Elman net with inputs x and xd, one output F , and three

hidden units. The hidden units are connected to three context units. In total, �ve units feed

into the hidden layer.

The results of training are shown in �gure 5.3. The same test can be done with an ordinary

0

2
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500400300200100

�2

�4

Figure 5.3: Training an Elman network to control an object. The solid line depicts the desired

trajectory xd; the dashed line the realised trajectory. The third line is the error.
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feed-forward network with sliding window input. We tested this with a network with �ve inputs,

four of which constituted the sliding window x
�3, x�2, x�1, and x0, and one the desired next

position of the object. Results are shown in �gure 5.4. The disappointing observation is that

0 100 200 300 400 5000

2

4

�2

�4

Figure 5.4: Training a feed-forward network to control an object. The solid line depicts the desired

trajectory xd; the dashed line the realised trajectory. The third line is the error.

the results are actually better with the ordinary feed-forward network, which has the same

complexity as the Elman network.

5.1.3 Back-propagation in fully recurrent networks

More complex schemes than the above are possible. For instance, independently of each other

Pineda (Pineda, 1987) and Almeida (Almeida, 1987) discovered that error back-propagation is

in fact a special case of a more general gradient learning method which can be used for training

attractor networks. However, also when a network does not reach a �xpoint, a learning method

can be used: back-propagation through time (Pearlmutter, 1989, 1990). This learning method,

the discussion of which extents beyond the scope of our course, can be used to train a multi-layer

perceptron to follow trajectories in its activation values.

5.2 The Hop�eld network

One of the earliest recurrent neural networks reported in literature was the auto-associator

independently described by Anderson (Anderson, 1977) and Kohonen (Kohonen, 1977) in 1977.

It consists of a pool of neurons with connections between each unit i and j, i 6= j (see �gure 5.5).

All connections are weighted.

In 1982, Hop�eld (Hop�eld, 1982) brings together several earlier ideas concerning these

networks and presents a complete mathematical analysis based on Ising spin models (Amit,

Gutfreund, & Sompolinsky, 1986). It is therefore that this network, which we will describe in

this chapter, is generally referred to as the Hop�eld network.

5.2.1 Description

The Hop�eld network consists of a set of N interconnected neurons (�gure 5.5) which update

their activation values asynchronously and independently of other neurons. All neurons are

both input and output neurons. The activation values are binary. Originally, Hop�eld chose

activation values of 1 and 0, but using values +1 and �1 presents some advantages discussed

below. We will therefore adhere to the latter convention.
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Figure 5.5: The auto-associator network. All neurons are both input and output neurons, i.e., a

pattern is clamped, the network iterates to a stable state, and the output of the network consists of

the new activation values of the neurons.

The state of the system is given by the activation values1 y = (yk). The net input sk(t+ 1)

of a neuron k at cycle t+ 1 is a weighted sum

sk(t+ 1) =
X
j 6=k

yj(t)wjk + �k: (5.1)

A simple threshold function (�gure 2.2) is applied to the net input to obtain the new activation

value yi(t+ 1) at time t+ 1:

yk(t+ 1) =

8<
:
+1 if sk(t+ 1) > Uk

�1 if sk(t+ 1) < Uk

yk(t) otherwise,

(5.2)

i.e., yk(t+1) = sgn(sk(t+1)). For simplicity we henceforth choose Uk = 0, but this is of course

not essential.

A neuron k in the Hop�eld network is called stable at time t if, in accordance with equa-

tions (5.1) and (5.2),

yk(t) = sgn(sk(t� 1)): (5.3)

A state � is called stable if, when the network is in state �, all neurons are stable. A pattern

xp is called stable if, when xp is clamped, all neurons are stable.

When the extra restriction wjk = wkj is made, the behaviour of the system can be described

with an energy function

E = �1
2

XX
j 6=k

yjykwjk �
X
k

�kyk: (5.4)

Theorem 2 A recurrent network with connections wjk = wkj in which the neurons are updated

using rule (5.2) has stable limit points.

Proof First, note that the energy expressed in eq. (5.4) is bounded from below, since the y
k
are

bounded from below and the wjk and �k are constant. Secondly, E is monotonically decreasing

when state changes occur, because

�E = ��yk

0
@X

j 6=k
yjwjk + �k

1
A (5.5)

is always negative when yk changes according to eqs. (5.1) and (5.2).

1Often, these networks are described using the symbols used by Hop�eld: Vk for activation of unit k, Tjk for

the connection weight between units j and k, and Uk for the external input of unit k. We decided to stick to the

more general symbols y
k
, wjk, and �k.
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The advantage of a +1=�1 model over a 1=0 model then is symmetry of the states of the

network. For, when some pattern x is stable, its inverse is stable, too, whereas in the 1=0 model

this is not always true (as an example, the pattern 00 � � � 00 is always stable, but 11 � � � 11 need

not be). Similarly, both a pattern and its inverse have the same energy in the +1=�1 model.
Removing the restriction of bidirectional connections (i.e., wjk = wkj) results in a system

that is not guaranteed to settle to a stable state.

5.2.2 Hop�eld network as associative memory

A primary application of the Hop�eld network is an associative memory. In this case, the

weights of the connections between the neurons have to be thus set that the states of the system

corresponding with the patterns which are to be stored in the network are stable. These states

can be seen as `dips' in energy space. When the network is cued with a noisy or incomplete test

pattern, it will render the incorrect or missing data by iterating to a stable state which is in

some sense `near' to the cued pattern.

The Hebb rule can be used (section 2.3.2) to store P patterns:

wjk =

8><
>:

PX
p=1

x

p
jx

p
k if j 6= k

0 otherwise,

(5.6)

i.e., if x
p
j and x

p
k are equal, wjk is increased, otherwise decreased by one (note that, in the original

Hebb rule, weights only increase). It appears, however, that the network gets saturated very

quickly, and that about 0:15N memories can be stored before recall errors become severe.

There are two problems associated with storing too many patterns:

1. the stored patterns become unstable;

2. spurious stable states appear (i.e., stable states which do not correspond with stored

patterns).

The �rst of these two problems can be solved by an algorithm proposed by Bruce et al. (Bruce,

Canning, Forrest, Gardner, & Wallace, 1986):

Algorithm 1 Given a starting weight matrix W =
h
wjk

i
, for each pattern x

p
to be stored and

each element x
p
k in x

p
de�ne a correction �k such that

�k =

�
0 if yk is stable and x

p
is clamped;

1 otherwise.
(5.7)

Now modify wjk by �wjk = yjyk(�j + �k) if j 6= k. Repeat this procedure until all patterns are

stable.

It appears that, in practice, this algorithm usually converges. There exist cases, however, where

the algorithm remains oscillatory (try to �nd one)!

The second problem stated above can be alleviated by applying the Hebb rule in reverse to

the spurious stable state, but with a low learning factor (Hop�eld, Feinstein, & Palmer, 1983).

Thus these patterns are weakly unstored and will become unstable again.

5.2.3 Neurons with graded response

The network described in section 5.2.1 can be generalised by allowing continuous activation

values. Here, the threshold activation function is replaced by a sigmoid. As before, this system

can be proved to be stable when a symmetric weight matrix is used (Hop�eld, 1984).
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Hop�eld networks for optimisation problems

An interesting application of the Hop�eld network with graded response arises in a heuristic

solution to the NP-complete travelling salesman problem (Garey & Johnson, 1979). In this

problem, a path of minimal distance must be found between n cities, such that the begin- and

end-points are the same.

Hop�eld and Tank (Hop�eld & Tank, 1985) use a network with n � n neurons. Each row

in the matrix represents a city, whereas each column represents the position in the tour. When

the network is settled, each row and each column should have one and only one active neuron,

indicating a speci�c city occupying a speci�c position in the tour. The neurons are updated using

rule (5.2) with a sigmoid activation function between 0 and 1. The activation value yXj = 1

indicates that city X occupies the jth place in the tour.

An energy function describing this problem can be set up as follows. To ensure a correct

solution, the following energy must be minimised:

E = A
2

X
X

X
j

X
k 6=j

yXjyXk

+ B
2

X
j

X
X

X
X 6=Y

yXjyY j

+ C
2

0
@X

X

X
j

yXj � n

1
A

2

(5.8)

where A, B, and C are constants. The �rst and second terms in equation (5.8) are zero if and

only if there is a maximum of one active neuron in each row and column, respectively. The last

term is zero if and only if there are exactly n active neurons.

To minimise the distance of the tour, an extra term

D
2

X
X

X
Y 6=X

X
j

dXY yXj(yY;j+1 + yY;j�1) (5.9)

is added to the energy, where dXY is the distance between cities X and Y and D is a constant.

For convenience, the subscripts are de�ned modulo n.

The weights are set as follows:

wXj;Y k = �A�XY (1� �jk) inhibitory connections within each row

�B�jk(1� �XY ) inhibitory connections within each column

�C global inhibition

�DdXY (�k;j+1 + �k;j�1) data term

(5.10)

where �jk = 1 if j = k and 0 otherwise. Finally, each neuron has an external bias input Cn.

Discussion

Although this application is interesting from a theoretical point of view, the applicability is

limited. Whereas Hop�eld and Tank state that, in a ten city tour, the network converges to a

valid solution in 16 out of 20 trials while 50% of the solutions are optimal, other reports show

less encouraging results. For example, (Wilson & Pawley, 1988) �nd that in only 15% of the

runs a valid result is obtained, few of which lead to an optimal or near-optimal solution. The

main problem is the lack of global information. Since, for an N -city problem, there are N !

possible tours, each of which may be traversed in two directions as well as started in N points,

the number of di�erent tours is N !=2N . Di�erently put, the N -dimensional hypercube in which

the solutions are situated is 2N degenerate. The degenerate solutions occur evenly within the
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hypercube, such that all but one of the �nal 2N con�gurations are redundant. The competition

between the degenerate tours often leads to solutions which are piecewise optimal but globally

ine�cient.

5.3 Boltzmann machines

The Boltzmann machine, as �rst described by Ackley, Hinton, and Sejnowski in 1985 (Ackley,

Hinton, & Sejnowski, 1985) is a neural network that can be seen as an extension to Hop�eld

networks to include hidden units, and with a stochastic instead of deterministic update rule.

The weights are still symmetric. The operation of the network is based on the physics principle

of annealing . This is a process whereby a material is heated and then cooled very, very slowly to

a freezing point. As a result, the crystal lattice will be highly ordered, without any impurities,

such that the system is in a state of very low energy. In the Boltzmann machine this system

is mimicked by changing the deterministic update of equation (5.2) in a stochastic update, in

which a neuron becomes active with a probability p,

p(yk  +1) =
1

1 + e
��Ek=T

(5.11)

where T is a parameter comparable with the (synthetic) temperature of the system. This

stochastic activation function is not to be confused with neurons having a sigmoid deterministic

activation function.

In accordance with a physical system obeying a Boltzmann distribution, the network will

eventually reach `thermal equilibrium' and the relative probability of two global states � and �

will follow the Boltzmann distribution

P�

P�
= e

�(E��E�)=T (5.12)

where P� is the probability of being in the �th global state, and E� is the energy of that state.

Note that at thermal equilibrium the units still change state, but the probability of �nding the

network in any global state remains constant.

At low temperatures there is a strong bias in favour of states with low energy, but the

time required to reach equilibrium may be long. At higher temperatures the bias is not so

favourable but equilibrium is reached faster. A good way to beat this trade-o� is to start at a

high temperature and gradually reduce it. At high temperatures, the network will ignore small

energy di�erences and will rapidly approach equilibrium. In doing so, it will perform a search of

the coarse overall structure of the space of global states, and will �nd a good minimum at that

coarse level. As the temperature is lowered, it will begin to respond to smaller energy di�erences

and will �nd one of the better minima within the coarse-scale minimum it discovered at high

temperature.

As multi-layer perceptrons, the Boltzmann machine consists of a non-empty set of visible

and a possibly empty set of hidden units. Here, however, the units are binary-valued and are

updated stochastically and asynchronously. The simplicity of the Boltzmann distribution leads

to a simple learning procedure which adjusts the weights so as to use the hidden units in an

optimal way (Ackley et al., 1985). This algorithm works as follows.

First, the input and output vectors are clamped. The network is then annealed until it

approaches thermal equilibrium at a temperature of 0. It then runs for a �xed time at equi-

librium and each connection measures the fraction of the time during which both the units it

connects are active. This is repeated for all input-output pairs so that each connection can

measure hyjykiclamped, the expected probability, averaged over all cases, that units j and k are

simultaneously active at thermal equilibrium when the input and output vectors are clamped.



5.3. BOLTZMANN MACHINES 55

Similarly, hyjykifree is measured when the output units are not clamped but determined by the

network.

In order to determine optimal weights in the network, an error function must be determined.

Now, the probability P free(yp) that the visible units are in state yp when the system is running

freely can be measured. Also, the desired probability P
clamped(yp) that the visible units are

in state yp is determined by clamping the visible units and letting the network run. Now, if

the weights in the network are correctly set, both probabilities are equal to each other, and the

error E in the network must be 0. Otherwise, the error must have a positive value measuring

the discrepancy between the network's internal mode and the environment. For this e�ect, the

`asymmetric divergence' or `Kullback information' is used:

E =
X
p

P
clamped(yp) log

P
clamped(yp)

P
free(yp)

; (5.13)

Now, in order to minimise E using gradient descent, we must change the weights according to

�wjk = �

@E

@wjk
: (5.14)

It is not di�cult to show that

@E

@wjk
= � 1

T

�
hyjykiclamped � hyjykifree

�
: (5.15)

Therefore, each weight is updated by

�wjk = 


�
hyjykiclamped � hyjykifree

�
: (5.16)
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6 Self-Organising Networks

In the previous chapters we discussed a number of networks which were trained to perform a

mapping F : <n ! <m by presenting the network `examples' (xp;dp) with dp = F (xp) of this

mapping. However, problems exist where such training data, consisting of input and desired

output pairs are not available, but where the only information is provided by a set of input

patterns xp. In these cases the relevant information has to be found within the (redundant)

training samples xp.

Some examples of such problems are:

� clustering: the input data may be grouped in `clusters' and the data processing system

has to �nd these inherent clusters in the input data. The output of the system should give

the cluster label of the input pattern (discrete output);

� vector quantisation: this problem occurs when a continuous space has to be discretised.

The input of the system is the n-dimensional vector x, the output is a discrete repre-

sentation of the input space. The system has to �nd optimal discretisation of the input

space;

� dimensionality reduction: the input data are grouped in a subspace which has lower di-

mensionality than the dimensionality of the data. The system has to learn an optimal

mapping, such that most of the variance in the input data is preserved in the output data;

� feature extraction: the system has to extract features from the input signal. This often

means a dimensionality reduction as described above.

In this chapter we discuss a number of neuro-computational approaches for these kinds of

problems. Training is done without the presence of an external teacher. The unsupervised

weight adapting algorithms are usually based on some form of global competition between the

neurons.

There are very many types of self-organising networks, applicable to a wide area of problems.

One of the most basic schemes is competitive learning as proposed by Rumelhart and Zipser

(Rumelhart & Zipser, 1985). A very similar network but with di�erent emergent properties

is the topology-conserving map devised by Kohonen. Other self-organising networks are ART,

proposed by Carpenter and Grossberg (Carpenter & Grossberg, 1987a; Grossberg, 1976), and

Fukushima's cognitron (Fukushima, 1975, 1988).

6.1 Competitive learning

6.1.1 Clustering

Competitive learning is a learning procedure that divides a set of input patterns in clusters

that are inherent to the input data. A competitive learning network is provided only with input

57
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vectors x and thus implements an unsupervised learning procedure. We will show its equivalence

to a class of `traditional' clustering algorithms shortly. Another important use of these networks

is vector quantisation, as discussed in section 6.1.2.

o

i

wio

Figure 6.1: A simple competitive learning network. Each of the four outputs o is connected to all

inputs i.

An example of a competitive learning network is shown in �gure 6.1. All output units o are

connected to all input units i with weights wio. When an input pattern x is presented, only a

single output unit of the network (the winner) will be activated. In a correctly trained network,

all x in one cluster will have the same winner. For the determination of the winner and the

corresponding learning rule, two methods exist.

Winner selection: dot product

For the time being, we assume that both input vectors x and weight vectors wo are normalised

to unit length. Each output unit o calculates its activation value yo according to the dot product

of input and weight vector:

yo =
X
i

wioxi =wo
T
x: (6.1)

In a next pass, output neuron k is selected with maximum activation

8o 6= k : yo � yk: (6.2)

Activations are reset such that yk = 1 and yo 6=k = 0. This is is the competitive aspect of the

network, and we refer to the output layer as the winner-take-all layer. The winner-take-all layer

is usually implemented in software by simply selecting the output neuron with highest activation

value. This function can also be performed by a neural network known as MAXNET (Lippmann,

1989). In MAXNET, all neurons o are connected to other units o0 with inhibitory links and to

itself with an excitatory link:

wo;o0 =

��� if o 6= o
0

+1 otherwise.
(6.3)

It can be shown that this network converges to a situation where only the neuron with highest

initial activation survives, whereas the activations of all other neurons converge to zero. From

now on, we will simply assume a winner k is selected without being concerned which algorithm

is used.

Once the winner k has been selected, the weights are updated according to:

wk(t+ 1) =
wk(t) + 
(x(t)�wk(t))

kwk(t) + 
(x(t)�wk(t))k
(6.4)

where the divisor ensures that all weight vectors w are normalised. Note that only the weights

of winner k are updated.

The weight update given in equation (6.4) e�ectively rotates the weight vector wo towards

the input vector x. Each time an input x is presented, the weight vector closest to this input is
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weight vector

pattern vector

w1

w2

w3

Figure 6.2: Example of clustering in 3D with normalised vectors, which all lie on the unity sphere. The

three weight vectors are rotated towards the centres of gravity of the three di�erent input clusters.

selected and is subsequently rotated towards the input. Consequently, weight vectors are rotated

towards those areas where many inputs appear: the clusters in the input. This procedure is

visualised in �gure 6.2.

a. b.

x
w1

w2

w1

x

w2

Figure 6.3: Determining the winner in a competitive learning network. a. Three normalised vectors.

b. The three vectors having the same directions as in a., but with di�erent lengths. In a., vectors

x and w1 are nearest to each other, and their dot product xTw1 = jxjjw1j cos� is larger than the

dot product of x and w2. In b., however, the pattern and weight vectors are not normalised, and in

this case w2 should be considered the `winner' when x is applied. However, the dot product xTw1

is still larger than xTw2.

Winner selection: Euclidean distance

Previously it was assumed that both inputs x and weight vectors w were normalised. Using the

the activation function given in equation (6.1) gives a `biological plausible' solution. In �gure 6.3

it is shown how the algorithm would fail if unnormalised vectors were to be used. Naturally

one would like to accommodate the algorithm for unnormalised input data. To this end, the

winning neuron k is selected with its weight vector wk closest to the input pattern x, using the
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Euclidean distance measure:

k : kwk � xk � kwo � xk 8o: (6.5)

It is easily checked that equation (6.5) reduces to (6.1) and (6.2) if all vectors are normalised. The

Euclidean distance norm is therefore a more general case of equations (6.1) and (6.2). Instead of

rotating the weight vector towards the input as performed by equation (6.4), the weight update

must be changed to implement a shift towards the input:

wk(t+ 1) =wk(t) + 
(x(t)�wk(t)): (6.6)

Again only the weights of the winner are updated.

A point of attention in these recursive clustering techniques is the initialisation. Especially

if the input vectors are drawn from a large or high-dimensional input space, it is not beyond

imagination that a randomly initialised weight vector wo will never be chosen as the winner

and will thus never be moved and never be used. Therefore, it is customary to initialise weight

vectors to a set of input patterns fxg drawn from the input set at random. Another more

thorough approach that avoids these and other problems in competitive learning is called leaky

learning . This is implemented by expanding the weight update given in equation (6.6) with

wl(t+ 1) =wl(t) + 

0(x(t)�wl(t)) 8l 6= k (6.7)

with 
0 � 
 the leaky learning rate. A somewhat similar method is known as frequency sensitive

competitive learning (Ahalt, Krishnamurthy, Chen, & Melton, 1990). In this algorithm,

each neuron records the number of times it is selected winner. The more often it wins, the less

sensitive it becomes to competition. Conversely, neurons that consistently fail to win increase

their chances of being selected winner.

Cost function

Earlier it was claimed, that a competitive network performs a clustering process on the input

data. I.e., input patterns are divided in disjoint clusters such that similarities between input

patterns in the same cluster are much bigger than similarities between inputs in di�erent clusters.

Similarity is measured by a distance function on the input vectors, as discussed before. A

common criterion to measure the quality of a given clustering is the square error criterion, given

by

E =
X
p

kwk � xpk2 (6.8)

where k is the winning neuron when input xp is presented. The weights w are interpreted
as cluster centres. It is not di�cult to show that competitive learning indeed seeks to �nd a
minimum for this square error by following the negative gradient of the error-function:

Theorem 3 The error function for pattern xp

E
p = 1

2

X
i

(wki � x
p

i )
2
; (6.9)

where k is the winning unit, is minimised by the weight update rule in eq. (6.6).

Proof As in eq. (3.12), we calculate the e�ect of a weight change on the error function. So we

have that

�pwio = �
 @E
p

@wio

(6.10)

where 
 is a constant of proportionality. Now, we have to determine the partial derivative of Ep:

@E
p

@wio

=
n
wio � x

p

i if unit o wins

0 otherwise
(6.11)
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such that

�pwio = �
(wio � x
p

i ) = 
(xpo � wio) (6.12)

which is eq. (6.6) written down for one element of wo.

Therefore, eq. (6.8) is minimised by repeated weight updates using eq. (6.6).

An almost identical process of moving cluster centres is used in a large family of conven-

tional clustering algorithms known as square error clustering methods, e.g., k-means, FORGY,

ISODATA, CLUSTER.

Example

In �gure 6.4, 8 clusters of each 6 data points are depicted. A competitive learning network using

Euclidean distance to select the winner was initialised with all weight vectors wo = 0. The

network was trained with 
 = 0:1 and a 
0 = 0:001 and the positions of the weights after 500

iterations are shown.

−0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.4: Competitive learning for clustering data. The data are given by \+". The positions of

the weight vectors after 500 iterations is given by \o".

6.1.2 Vector quantisation

Another important use of competitive learning networks is found in vector quantisation. A vector

quantisation scheme divides the input space in a number of disjoint subspaces and represents each

input vector x by the label of the subspace it falls into (i.e., index k of the winning neuron). The

di�erence with clustering is that we are not so much interested in �nding clusters of similar data,

but more in quantising the entire input space. The quantisation performed by the competitive

learning network is said to `track the input probability density function': the density of neurons

and thus subspaces is highest in those areas where inputs are most likely to appear, whereas

a more coarse quantisation is obtained in those areas where inputs are scarce. An example of

tracking the input density is sketched in �gure 6.5. Vector quantisation through competitive
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: input pattern : weight vector

x2

x1

Figure 6.5: This �gure visualises the tracking of the input density. The input patterns are drawn

from <2; the weight vectors also lie in <2. In the areas where inputs are scarce, the upper part of the

�gure, only few (in this case two) neurons are used to discretise the input space. Thus, the upper

part of the input space is divided into two large separate regions. The lower part, however, where

many more inputs have occurred, �ve neurons discretise the input space into �ve smaller subspaces.

learning results in a more �ne-grained discretisation in those areas of the input space where

most input have occurred in the past.

In this way, competitive learning can be used in applications where data has to be com-

pressed such as telecommunication or storage. However, competitive learning has also be used

in combination with supervised learning methods, and be applied to function approximation

problems or classi�cation problems. We will describe two examples: the \counterpropagation"

method and the \learning vector quantization".

Counterpropagation

In a large number of applications, networks that perform vector quantisation are combined with

another type of network in order to perform function approximation. An example of such a

forward
feed-vector

quantisation

i

h

o

y

who
wih

Figure 6.6: A network combining a vector quantisation layer with a 1-layer feed-forward neural

network. This network can be used to approximate functions from <2 to <2, the input space <2 is

discretised in 5 disjoint subspaces.
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network is given in �gure 6.6. This network can approximate a function

f : <n ! <m

by associating with each neuron o a function value [w1o; w2o; : : : ; wmo]
T which is somehow repre-

sentative for the function values f(x) of inputs x represented by o. This way of approximating

a function e�ectively implements a `look-up table': an input x is assigned to a table entry k

with 8o 6= k: kx �wkk � kx �wok, and the function value [w1k; w2k; : : : ; wmk]
T in this table

entry is taken as an approximation of f(x). A well-known example of such a network is the

Counterpropagation network (Hecht-Nielsen, 1988).

Depending on the application, one can choose to perform the vector quantisation before

learning the function approximation, or one can choose to learn the quantisation and the ap-

proximation layer simultaneously. As an example of the latter, the network presented in �gure 6.6

can be supervisedly trained in the following way:

1. present the network with both input x and function value d = f(x);

2. perform the unsupervised quantisation step. For each weight vector, calculate the distance

from its weight vector to the input pattern and �nd winner k. Update the weights wih

with equation (6.6);

3. perform the supervised approximation step:

wko(t+ 1) = wko(t) + 
(do � wko(t)): (6.13)

This is simply the �-rule with yo =
P

h yhwho = wko when k is the winning neuron and the

desired output is given by d = f(x).

If we de�ne a function g(x; k) as :

g(x; k) =

(
1 if k is winner

0 otherwise
(6.14)

it can be shown that this learning procedure converges to

who =

Z
<
n

yog(x; h) dx: (6.15)

I.e., each table entry converges to the mean function value over all inputs in the subspace

represented by that table entry. As we have seen before, the quantisation scheme tracks the

input probability density function, which results in a better approximation of the function in

those areas where input is most likely to appear.

Not all functions are represented accurately by this combination of quantisation and approx-

imation layers. E.g., a simple identity or combinations of sines and cosines are much better

approximated by multilayer back-propagation networks if the activation functions are chosen

appropriately. However, if we expect our input to be (a subspace of) a high dimensional input

space <n and we expect our function f to be discontinuous at numerous points, the combination

of quantisation and approximation is not uncommon and probably very e�cient. Of course this

combination extends itself much further than the presented combination of the presented single

layer competitive learning network and the single layer feed-forward network. The latter could

be replaced by a reinforcement learning procedure (see chapter 7). The quantisation layer can

be replaced by various other quantisation schemes, such as Kohonen networks (see section 6.2)

or octree methods (Jansen, Smagt, & Groen, 1994). In fact, various modern statistical function

approximation methods (CART, MARS (Breiman, Friedman, Olshen, & Stone, 1984; Friedman,

1991)) are based on this very idea, extended with the possibility to have the approximation layer

in
uence the quantisation layer (e.g., to obtain a better or locally more �ne-grained quantisa-

tion). Recent research (Rosen, Goodwin, & Vidal, 1992) also investigates in this direction.
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Learning Vector Quantisation

It is an unpleasant habit in neural network literature, to also cover Learning Vector Quantisation

(LVQ) methods in chapters on unsupervised clustering. Granted that these methods also perform

a clustering or quantisation task and use similar learning rules, they are trained supervisedly

and perform discriminant analysis rather than unsupervised clustering. These networks attempt

to de�ne `decision boundaries' in the input space, given a large set of exemplary decisions (the

training set); each decision could, e.g., be a correct class label.

A rather large number of slightly di�erent LVQ methods is appearing in recent literature.

They are all based on the following basic algorithm:

1. with each output neuron o, a class label (or decision of some other kind) yo is associated;

2. a learning sample consists of input vector xp together with its correct class label ypo ;

3. using distance measures between weight vectors wo and input vector xp, not only the

winner k1 is determined, but also the second best k2:

kxp �wk1k < kxp �wk2k < kxp �wik 8o 6= k1; k2;

4. the labels y
p
k1
, y

p
k2

are compared with d
p. The weight update rule given in equation (6.6)

is used selectively based on this comparison.

An example of the last step is given by the LVQ2 algorithm by Kohonen (Kohonen, 1977), using

the following strategy:

� if y
p
k1
6= d

p and d
p = y

p
k2
;

� and kxp �wk2k � kxp �wk1k < �;

� then wk2(t+ 1) =wk2 + 
(x �wk2(t))

� and wk1(t+ 1) =wk1(t)� 
(x �wk1(t))

I.e., wk2 with the correct label is moved towards the input vector, while wk1 with the incorrect

label is moved away from it.

The new LVQ algorithms that are emerging all use di�erent implementations of these di�erent

steps, e.g., how to de�ne class labels yo, how many `next-best' winners are to be determined,

how to adapt the number of output neurons i and how to selectively use the weight update rule.

6.2 Kohonen network

The Kohonen network (Kohonen, 1982, 1984) can be seen as an extension to the competitive

learning network, although this is chronologically incorrect. Also, the Kohonen network has a

di�erent set of applications.

In the Kohonen network, the output units in S are ordered in some fashion, often in a two-

dimensional grid or array, although this is application-dependent. The ordering, which is chosen

by the user1, determines which output neurons are neighbours.

Now, when learning patterns are presented to the network, the weights to the output units

are thus adapted such that the order present in the input space <N is preserved in the output,

i.e., the neurons in S. This means that learning patterns which are near to each other in the

input space (where `near' is determined by the distance measure used in �nding the winning unit)

1Of course, variants have been designed which automatically generate the structure of the network (Martinetz

& Schulten, 1991; Fritzke, 1991).
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must be mapped on output units which are also near to each other, i.e., the same or neighbouring

units. Thus, if inputs are uniformly distributed in <N and the order must be preserved, the

dimensionality of S must be at least N . The mapping, which represents a discretisation of the

input space, is said to be topology preserving . However, if the inputs are restricted to a subspace

of <N , a Kohonen network can be used of lower dimensionality. For example: data on a two-

dimensional manifold in a high dimensional input space can be mapped onto a two-dimensional

Kohonen network, which can for example be used for visualisation of the data.

Usually, the learning patterns are random samples from <N . At time t, a sample x(t) is

generated and presented to the network. Using the same formulas as in section 6.1, the winning

unit k is determined. Next, the weights to this winning unit as well as its neighbours are adapted

using the learning rule

wo(t+ 1) =wo(t) + 
g(o; k) (x(t)�wo(t)) 8o 2 S: (6.16)

Here, g(o; k) is a decreasing function of the grid-distance between units o and k, such that

g(k; k) = 1. For example, for g() a Gaussian function can be used, such that (in one dimension!)

g(o; k) = exp
��(o� k)2

�
(see �gure 6.7). Due to this collective learning scheme, input signals
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Figure 6.7: Gaussian neuron distance function g(). In this case, g() is shown for a two-dimensional

grid because it looks nice.

which are near to each other will be mapped on neighbouring neurons. Thus the topology

inherently present in the input signals will be preserved in the mapping, such as depicted in

�gure 6.8.

Iteration 0 Iteration 200 Iteration 600 Iteration 1900

Figure 6.8: A topology-conserving map converging. The weight vectors of a network with two inputs

and 8� 8 output neurons arranged in a planar grid are shown. A line in each �gure connects weight

wi;(o1;o2) with weights wi;(o1+1;o2) and wi;(i1;i2+1). The leftmost �gure shows the initial weights; the

rightmost when the map is almost completely formed.

If the intrinsic dimensionality of S is less than N , the neurons in the network are `folded' in

the input space, such as depicted in �gure 6.9.
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Figure 6.9: The mapping of a two-dimensional input space on a one-dimensional Kohonen network.

The topology-conserving quality of this network has many counterparts in biological brains.

The brain is organised in many places so that aspects of the sensory environment are represented

in the form of two-dimensional maps. For example, in the visual system, there are several

topographic mappings of visual space onto the surface of the visual cortex. There are organised

mappings of the body surface onto the cortex in both motor and somatosensory areas, and

tonotopic mappings of frequency in the auditory cortex. The use of topographic representations,

where some important aspect of a sensory modality is related to the physical locations of the

cells on a surface, is so common that it obviously serves an important information processing

function.

It does not come as a surprise, therefore, that already many applications have been devised

of the Kohonen topology-conserving maps. Kohonen himself has successfully used the network

for phoneme-recognition (Kohonen, Makisara, & Saramaki, 1984). Also, the network has been

used to merge sensory data from di�erent kinds of sensors, such as auditory and visual, `looking'

at the same scene (Gielen, Krommenhoek, & Gisbergen, 1991). Yet another application is in

robotics, such as shown in section 8.1.1.

To explain the plausibility of a similar structure in biological networks, Kohonen remarks

that the lateral inhibition between the neurons could be obtained via e�erent connections be-

tween those neurons. In one dimension, those connection strengths form a `Mexican hat' (see

�gure 6.10).

lateral distance

excitation

Figure 6.10: Mexican hat. Lateral interaction around the winning neuron as a function of distance:

excitation to nearby neurons, inhibition to farther o� neurons.

6.3 Principal component networks

6.3.1 Introduction

The networks presented in the previous sections can be seen as (nonlinear) vector transformations

which map an input vector to a number of binary output elements or neurons. The weights are

adjusted in such a way that they could be considered as prototype vectors (vectorial means) for

the input patterns for which the competing neuron wins.

The self-organising transform described in this section rotates the input space in such a

way that the values of the output neurons are as uncorrelated as possible and the energy or

variances of the patterns is mainly concentrated in a few output neurons. An example is shown
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Figure 6.11: Distribution of input samples.

in �gure 6.11. The two dimensional samples (x1; x2) are plotted in the �gure. It can be easily

seen that x1 and x2 are related, such that if we know x1 we can make a reasonable prediction

of x2 and vice versa since the points are centered around the line x1 = x2. If we rotate the axes

over �=4 we get the (e1; e2) axis as plotted in the �gure. Here the conditional prediction has no

use because the points have uncorrelated coordinates. Another property of this rotation is that

the variance or energy of the transformed patterns is maximised on a lower dimension. This can

be intuitively veri�ed by comparing the spreads (dx
1
; dx

2
) and (de1 ; de2) in the �gures. After the

rotation, the variance of the samples is large along the e1 axis and small along the e2 axis.

This transform is very closely related to the eigenvector transformation known from image

processing where the image has to be coded or transformed to a lower dimension and recon-

structed again by another transform as well as possible (see section 9.3.2).

The next section describes a learning rule which acts as a Hebbian learning rule, but which

scales the vector length to unity. In the subsequent section we will see that a linear neuron with

a normalised Hebbian learning rule acts as such a transform, extending the theory in the last

section to multi-dimensional outputs.

6.3.2 Normalised Hebbian rule

The model considered here consists of one linear(!) neuron with input weights w. The output

yo(t) of this neuron is given by the usual inner product of its weight w and the input vector x:

yo(:t) =w(t)Tx(t) (6.17)

As seen in the previous sections, all models are based on a kind of Hebbian learning. However,

the basic Hebbian rule would make the weights grow uninhibitedly if there were correlation in

the input patterns. This can be overcome by normalising the weight vector to a �xed length,

typically 1, which leads to the following learning rule

w(t+ 1) =
w(t) + 
y(t)x(t)

L (w(t) + 
y(t)x(t))
(6.18)

where L(�) indicates an operator which returns the vector length, and 
 is a small learning

parameter. Compare this learning rule with the normalised learning rule of competitive learning.

There the delta rule was normalised, here the standard Hebb rule is.
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Now the operator which computes the vector length, the norm of the vector, can be approx-

imated by a Taylor expansion around 
 = 0:

L (w(t) + 
y(t)x(t)) = 1 + 


@L

@


����

=0

+O(
2): (6.19)

When we substitute this expression for the vector length in equation (6.18), it resolves for

small 
 to2

w(t+ 1) = (w(t) + 
y(t)x(t))

 
1� 


@L

@


����

=0

+O(
2)

!
: (6.20)

Since �L
�

j
=0 = y(t)2, discarding the higher order terms of 
 leads to

w(t+ 1) =w(t) + 
y(t) (x(t)� y(t)w(t)) (6.21)

which is called the `Oja learning rule' (Oja, 1982). This learning rule thus modi�es the weight

in the usual Hebbian sense, the �rst product terms is the Hebb rule yo(t)x(t), but normalises

its weight vector directly by the second product term �yo(t)yo(t)w(t). What exactly does this

learning rule do with the weight vector?

6.3.3 Principal component extractor

Remember probability theory? Consider an N -dimensional signal x(t) with

� mean � = E(x(t));

� correlation matrix R = E((x(t)� �)(x(t)� �)T ).

In the following we assume the signal mean to be zero, so � = 0.

From equation (6.21) we see that the expectation of the weights for the Oja learning rule

equals

E(w(t+ 1)jw(t)) =w(t) + 


�
Rw(t)�

�
w(t)TRw(t)

�
w(t)

�
(6.22)

which has a continuous counterpart

d

dt

w(t) = Rw(t)�
�
w(t)TRw(t)

�
w(t): (6.23)

Theorem 1 Let the eigenvectors ei of R be ordered with descending associated eigenvalues �i

such that �1 > �2 > : : : > �N . With equation (6.23) the weights w(t) will converge to �e1.

Proof 1 Since the eigenvectors of R span the N -dimensional space, the weight vector can be

decomposed as

w(t) =

NX
i

�i(t)ei: (6.24)

Substituting this in the di�erential equation and concluding the theorem is left as an exercise.

2Remembering that 1=(1 + a
) = 1� a
 +O(
2).
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6.3.4 More eigenvectors

In the previous section it was shown that a single neuron's weight converges to the eigenvector of

the correlation matrix with maximum eigenvalue, i.e., the weight of the neuron is directed in the

direction of highest energy or variance of the input patterns. Here we tackle the question of how

to �nd the remaining eigenvectors of the correlation matrix given the �rst found eigenvector.

Consider the signal x which can be decomposed into the basis of eigenvectors ei of its

correlation matrix R,

x =

NX
i

�iei (6.25)

If we now subtract the component in the direction of e1, the direction in which the signal has

the most energy, from the signal x

~x = x � �1e1 (6.26)

we are sure that when we again decompose ~x into the eigenvector basis, the coe�cient �1 = 0,

simply because we just subtracted it. We call ~x the de
ation of x.

If now a second neuron is taught on this signal ~x, then its weights will lie in the direction of the

remaining eigenvector with the highest eigenvalue. Since the de
ation removed the component

in the direction of the �rst eigenvector, the weight will converge to the remaining eigenvector

with maximum eigenvalue. In the previous section we ordered the eigenvalues in magnitude, so

according to this de�nition in the limit we will �nd e2. We can continue this strategy and �nd

all the N eigenvectors belonging to the signal x.

We can write the de
ation in neural network terms if we see that

yo =w
T
x = e

T
1

NX
i

�iei = �i (6.27)

since

w = e1: (6.28)

So that the de
ated vector ~x equals

~x = x � yow: (6.29)

The term subtracted from the input vector can be interpreted as a kind of a back-projection or

expectation. Compare this to ART described in the next section.

6.4 Adaptive resonance theory

The last unsupervised learning network we discuss di�ers from the previous networks in that it

is recurrent; as with networks in the next chapter, the data is not only fed forward but also back

from output to input units.

6.4.1 Background: Adaptive resonance theory

In 1976, Grossberg (Grossberg, 1976) introduced a model for explaining biological phenomena.

The model has three crucial properties:

1. a normalisation of the total network activity. Biological systems are usually very adaptive

to large changes in their environment. For example, the human eye can adapt itself to

large variations in light intensities;

2. contrast enhancement of input patterns. The awareness of subtle di�erences in input

patterns can mean a lot in terms of survival. Distinguishing a hiding panther from a

resting one makes all the di�erence in the world. The mechanism used here is contrast

enhancement;
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3. short-term memory (STM) storage of the contrast-enhanced pattern. Before the input

pattern can be decoded, it must be stored in the short-term memory. The long-term

memory (LTM) implements an arousal mechanism (i.e., the classi�cation), whereas the

STM is used to cause gradual changes in the LTM.

The system consists of two layers, F1 and F2, which are connected to each other via the

LTM (see �gure 6.12). The input pattern is received at F1, whereas classi�cation takes place in

F2. As mentioned before, the input is not directly classi�ed. First a characterisation takes place

LTMLTM

STM activity pattern

STM activity pattern

category representation field

feature representation field
F1

F2

input

Figure 6.12: The ART architecture.

by means of extracting features, giving rise to activation in the feature representation �eld. The

expectations, residing in the LTM connections, translate the input pattern to a categorisation

in the category representation �eld. The classi�cation is compared to the expectation of the

network, which resides in the LTM weights from F2 to F1. If there is a match, the expectations

are strengthened, otherwise the classi�cation is rejected.

6.4.2 ART1: The simpli�ed neural network model

The ART1 simpli�ed model consists of two layers of binary neurons (with values 1 and 0), called

F1 (the comparison layer) and F2 (the recognition layer) (see �gure 6.13). Each neuron in F1

is connected to all neurons in F2 via the continuous-valued forward long term memory (LTM)

W
f , and vice versa via the binary-valued backward LTM W

b. The other modules are gain 1

and 2 (G1 and G2), and a reset module.

Each neuron in the comparison layer receives three inputs: a component of the input pattern,

a component of the feedback pattern, and a gain G1. A neuron outputs a 1 if and only if at

least three of these inputs are high: the `two-thirds rule.'

The neurons in the recognition layer each compute the inner product of their incoming

(continuous-valued) weights and the pattern sent over these connections. The winning neuron

then inhibits all the other neurons via lateral inhibition.

Gain 2 is the logical `or' of all the elements in the input pattern x.

Gain 1 equals gain 2, except when the feedback pattern from F2 contains any 1; then it is

forced to zero.

Finally, the reset signal is sent to the active neuron in F2 if the input vector x and the

output of F1 di�er by more than some vigilance level.

Operation

The network starts by clamping the input at F1. Because the output of F2 is zero, G1 and G2

are both on and the output of F1 matches its input.
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Figure 6.13: The ART1 neural network.

The pattern is sent to F2, and in F2 one neuron becomes active. This signal is then sent

back over the backward LTM, which reproduces a binary pattern at F1. Gain 1 is inhibited,

and only the neurons in F1 which receive a `one' from both x and F2 remain active.

If there is a substantial mismatch between the two patterns, the reset signal will inhibit the

neuron in F2 and the process is repeated.

Instead of following Carpenter and Grossberg's description of the system using di�erential

equations, we use the notation employed by Lippmann (Lippmann, 1987):

1. Initialisation:

wji
b(0) = 1

wij
f (0) =

1

1 +N

where N is the number of neurons in F1, M the number of neurons in F2, 0 � i < N ,

and 0 � j < M . Also, choose the vigilance threshold �, 0 � � � 1;

2. Apply the new input pattern x;

3. compute the activation values y0 of the neurons in F2:

yi
0 =

NX
j=1

wij
f (t)xi; (6.30)

4. select the winning neuron k (0 � k < M);

5. vigilance test: if

wk
b(t) � x
x � x > �; (6.31)

where � denotes inner product, go to step 7, else go to step 6. Note that wk
b �x essentially

is the inner product x� � x, which will be large if x� and x are near to each other;

6. neuron k is disabled from further activity. Go to step 3;

7. Set for all l, 0 � l < N :

wkl
b(t+ 1) = wkl

b(t)xl;

wlk
f (t+ 1) =

wkl
b(t)xl

1
2
+
PN

i=1wki
b(t)xi

;
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8. re-enable all neurons in F2 and go to step 2.

Figure 6.14 shows exemplar behaviour of the network.

backward LTM from:

pattern
input

4321
outputoutputoutputoutput

active
notnot

active

not
active active

not

not
active

not
active

active
not

Figure 6.14: An example of the behaviour of the Carpenter Grossberg network for letter patterns.

The binary input patterns on the left were applied sequentially. On the right the stored patterns (i.e.,

the weights of W b for the �rst four output units) are shown.

6.4.3 ART1: The original model

In later work, Carpenter and Grossberg (Carpenter & Grossberg, 1987a, 1987b) present several

neural network models to incorporate parts of the complete theory. We will only discuss the

�rst model, ART1.

The network incorporates a follow-the-leader clustering algorithm (Hartigan, 1975). This

algorithm tries to �t each new input pattern in an existing class. If no matching class can be

found, i.e., the distance between the new pattern and all existing classes exceeds some threshold,

a new class is created containing the new pattern.

The novelty in this approach is that the network is able to adapt to new incoming pat-

terns, while the previous memory is not corrupted. In most neural networks, such as the back-

propagation network, all patterns must be taught sequentially; the teaching of a new pattern

might corrupt the weights for all previously learned patterns. By changing the structure of the

network rather than the weights, ART1 overcomes this problem.

Normalisation

We will refer to a cell in F1 or F2 with k.

Each cell k in F1 or F2 receives an input sk and respond with an activation level yk.

In order to introduce normalisation in the model, we set I =
P
sk and let the relative input

intensity �k = skI
�1.

So we have a model in which the change of the response yk of an input at a certain cell k

� depends inhibitorily on all other inputs and the sensitivity of the cell, i.e., the surroundings

of each cell have a negative in
uence on the cell �yk
P

l 6=k sl;
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� has an excitatory response as far as the input at the cell is concerned +Bsk;

� has an inhibitory response for normalisation �yksk;
� has a decay �Ayk.

Here, A and B are constants. The di�erential equation for the neurons in F1 and F2 now is

dyk

dt

= �Ayk + (B � yk)sk � yk

X
l 6=k

sl; (6.32)

with 0 � yk(0) � B because the inhibitory e�ect of an input can never exceed the excitatory

input.

At equilibrium, when dyk=dt = 0, and with I =
P
sk we have that

yk(A+ I) = Bsk: (6.33)

Because of the de�nition of �k = skI
�1 we get

yk = �k
BI

A+ I

: (6.34)

Therefore, at equilibrium yk is proportional to �k, and, since

BI

A+ I

� B; (6.35)

the total activity ytotal =
P
yk never exceeds B: it is normalised.

Contrast enhancement

In order to make F2 react better on di�erences in neuron values in F1 (or vice versa), contrast

enhancement is applied: the contrasts between the neuronal values in a layer are ampli�ed. We

can show that eq. (6.32) does not su�ce anymore. In order to enhance the contrasts, we chop

o� all the equal fractions (uniform parts) in F1 or F2. This can be done by adding an extra

inhibitory input proportional to the inputs from the other cells with a factor C:

dyk

dt

= �Ayk + (B � yk)sk � (yk + C)
X
l 6=k

sl: (6.36)

At equilibrium, when we set B = (n� 1)C where n is the number of neurons, we have

yk =
nCI

A+ I

�
�k �

1

n

�
: (6.37)

Now, when an input in which all the sk are equal is given, then all the yk are zero: the e�ect of

C is enhancing di�erences. If we set B � (n� 1)C or C=(B+C) � 1=n, then more of the input

shall be chopped o�.

Discussion

The description of ART1 continues by de�ning the di�erential equations for the LTM. Instead

of following Carpenter and Grossberg's description, we will revert to the simpli�ed model as

presented by Lippmann (Lippmann, 1987).
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7 Reinforcement learning

In the previous chapters a number of supervised training methods have been described in which

the weight adjustments are calculated using a set of `learning samples', existing of input and

desired output values. However, not always such a set of learning examples is available. Often

the only information is a scalar evaluation r which indicates how well the neural network is per-

forming. Reinforcement learning involves two subproblems. The �rst is that the `reinforcement'

signal r is often delayed since it is a result of network outputs in the past. This temporal credit

assignment problem is solved by learning a `critic' network which represents a cost function

J predicting future reinforcement. The second problem is to �nd a learning procedure which

adapts the weights of the neural network such that a mapping is established which minimizes

J . The two problems are discussed in the next paragraphs, respectively. Figure 7.1 shows a

reinforcement-learning network interacting with a system.

7.1 The critic

The �rst problem is how to construct a critic which is able to evaluate system performance. If

the objective of the network is to minimize a direct measurable quantity r, performance feedback

is straightforward and a critic is not required. On the other hand, how is current behavior to

be evaluated if the objective concerns future system performance. The performance may for

instance be measured by the cumulative or future error. Most reinforcement learning methods

(such as Barto, Sutton and Anderson (Barto, Sutton, & Anderson, 1983)) use the temporal

di�erence (TD) algorithm (Sutton, 1988) to train the critic.

Suppose the immediate cost of the system at time step k are measured by r(xk;uk; k), as a

function of system states xk and control actions (network outputs) uk. The immediate measure

r is often called the external reinforcement signal in contrast to the internal reinforcement

signal in �gure 7.1. De�ne the performance measure J(xk;uk; k) of the system as a discounted

critic Ĵ

xu system

reinforcement
signal

reinf.
learning
controller

Figure 7.1: Reinforcement learning scheme.
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cumulative of future cost. The task of the critic is to predict the performance measure:

J(xk;uk; k) =

1X
i=k



i�k

r(xi;ui; i) (7.1)

in which 
 2 [0; 1] is a discount factor (usually � 0.95).

The relation between two successive prediction can easily be derived:

J(xk;uk; k) = r(xk;uk; k) + 
J(xk+1;uk+1; k + 1): (7.2)

If the network is correctly trained, the relation between two successive network outputs Ĵ

should be:

Ĵ(xk;uk; k) = r(xk;uk; k) + 
Ĵ(xk+1;uk+1; k + 1): (7.3)

If the network is not correctly trained, the temporal di�erence �(k) between two successive

predictions is used to adapt the critic network:

�(k) =
h
r(xk;uk; k) + 
Ĵ(xk+1;uk+1; k + 1)

i
� Ĵ(xk;uk; k): (7.4)

A learning rule for the weights of the critic network wc(k), based on minimizing �2(k) can

be derived:

�wc(k) = ��"(k)@Ĵ(xk;uk; k)
@wc(k)

(7.5)

in which � is the learning rate.

7.2 The controller network

If the critic is capable of providing an immediate evaluation of performance, the controller

network can be adapted such that the optimal relation between system states and control actions

is found. Three approaches are distinguished:

1. In case of a �nite set of actions U , all actions may virtually be executed. The action which

decreases the performance criterion most is selected:

uk = min
u2U

Ĵ(xk;uk; k) (7.6)

The RL-method with this `controller' is called Q-learning (Watkins & Dayan, 1992). The

method approximates dynamic programming which will be discussed in the next section.

2. If the performance measure J(xk;uk; k) is accurately predicted, then the gradient with

respect to the controller command uk can be calculated, assuming that the critic network

is di�erentiable. If the measure is to be minimized, the weights of the controller wr are

adjusted in the direction of the negative gradient:

�wr(k) = ��
@Ĵ(xk;uk; k)

@u(k)

@u(k)

@wr(k)
(7.7)

with � being the learning rate. Werbos (Werbos, 1992) has discussed some of these gradient

based algorithms in detail. Sofge and White (Sofge & White, 1992) applied one of the

gradient based methods to optimize a manufacturing process.
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3. A direct approach to adapt the controller is to use the di�erence between the predicted and

the `true' performance measure as expressed in equation 7.3. Suppose that the performance

measure is to be minimized. Control actions that result in negative di�erences, i.e. the true

performance is better than was expected, then the controller has to be `rewarded'. On the

other hand, in case of a positive di�erence, then the control action has to be `penalized'.

The idea is to explore the set of possible actions during learning and incorporate the

bene�cial ones into the controller. Learning in this way is related to trial-and-error learning

studied by psychologists in which behavior is selected according to its consequences.

Generally, the algorithms select probabilistically actions from a set of possible actions and

update action probabilities on basis of the evaluation feedback. Most of the algorithms

are based on a look-up table representation of the mapping from system states to actions

(Barto et al., 1983). Each table entry has to learn which control action is best when that

entry is accessed. It may be also possible to use a parametric mapping from systems states

to action probabilities. Gullapalli (Gullapalli, 1990) adapted the weights of a single layer

network. In the next section the approach of Barto et. al. is described.

7.3 Barto's approach: the ASE-ACE combination

Barto, Sutton and Anderson (Barto et al., 1983) have formulated `reinforcement learning'

as a learning strategy which does not need a set of examples provided by a `teacher.' The

system described by Barto explores the space of alternative input-output mappings and uses an

evaluative feedback (reinforcement signal) on the consequences of the control signal (network

output) on the environment. It has been shown that such reinforcement learning algorithms are

implementing an on-line, incremental approximation to the dynamic programming method for

optimal control, and are also called `heuristic' dynamic programming (Werbos, 1990).

The basic building blocks in the Barto network are an Associative Search Element (ASE)

which uses a stochastic method to determine the correct relation between input and output and

an Adaptive Critic Element (ACE) which learns to give a correct prediction of future reward

or punishment (Figure 7.2). The external reinforcement signal r can be generated by a special

sensor (for example a collision sensor of a mobile robot) or be derived from the state vector. For

example, in control applications, where the state s of a system should remain in a certain part

A of the control space, reinforcement is given by:

r =

�
0 if s 2 A,
�1 otherwise.

(7.8)

7.3.1 Associative search

In its most elementary form the ASE gives a binary output value yo(t) 2 f0; 1g as a stochastic

function of an input vector. The total input of the ASE is, similar to the neuron presented in

chapter 2, the weighted sum of the inputs, with the exception that the bias input in this case is

a stochastic variable N with mean zero normal distribution:

s(t) =

NX
j=1

wSjxj(t) +Nj: (7.9)

The activation function F is a threshold such that

yo(t) = y(t) =

�
1 if s(t) > 0,

0 otherwise.
(7.10)
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Figure 7.2: Architecture of a reinforcement learning scheme with critic element

For updating the weights, a Hebbian type of learning rule is used. However, the update is

weighted with the reinforcement signal r(t) and an `eligibility' ej is de�ned instead of the product

yo(t)xj(t) of input and output:

wSj(t+ 1) = wSj(t) + �r(t)ej(t) (7.11)

where � is a learning factor. The eligibility ej is given by

ej(t+ 1) = �ej(t) + (1� �)yo(t)xj(t) (7.12)

with � the decay rate of the eligibility. The eligibility is a sort of `memory;' ej is high if the

signals from the input state unit j and the output unit are correlated over some time.

Using r(t) in expression (7.11) has the disadvantage that learning only �nds place when there

is an external reinforcement signal. Instead of r(t), usually a continuous internal reinforcement

signal r̂(t) given by the ACE, is used.

Barto and Anandan (Barto & Anandan, 1985) proved convergence for the case of a single

binary output unit and a set of linearly independent patterns xp: In control applications, the

input vector is the (n-dimensional) state vector s of the system. In order to obtain a linear

independent set of patterns xp, often a `decoder' is used, which divides the range of each of the

input variables si in a number of intervals. The aim is to divide the input (state) space in a

number of disjunct subspaces (or `boxes' as called by Barto). The input vector can therefore

only be in one subspace at a time. The decoder converts the input vector into a binary valued

vector x, with only one element equal to one, indicating which subspace is currently visited. It

has been shown (Kr�ose & Dam, 1992) that instead of a-priori quantisation of the input space,

a self-organising quantisation, based on methods described in this chapter, results in a better

performance.

7.3.2 Adaptive critic

The Adaptive Critic Element (ACE, or `evaluation network') is basically the same as described in

section 7.1. An error signal is derived from the temporal di�erence of two successive predictions

(in this case denoted by p!) and is used for training the ACE:

r̂(t) = r(t) + 
p(t)� p(t� 1): (7.13)
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p(t) is implemented as a series of `weights' wCj to the ACE such that

p(t) = wCk (7.14)

if the system is in state k at time t, denoted by xk = 1. The function is learned by adjusting

the wCj 's according to a `delta-rule' with an error signal � given by r̂(t):

�wCj(t) = �r̂(t)hj(t): (7.15)

� is the learning parameter and hj(t) indicates the `trace' of neuron xj:

hj(t) = �hj(t� 1) + (1� �)xj(t� 1): (7.16)

This trace is a low-pass �lter or momentum, through which the credit assigned to state j increases

while state j is active and decays exponentially after the activity of j has expired.

If r̂(t) is positive, the action u of the system has resulted in a higher evaluation value, whereas

a negative r̂(t) indicates a deterioration of the system. r̂(t) can be considered as an internal

reinforcement signal.

7.3.3 The cart-pole system

An example of such a system is the cart-pole balancing system (see �gure 7.3). Here, a dynamics

controller must control the cart in such a way that the pole always stands up straight. The

controller applies a `left' or `right' force F of �xed magnitude to the cart, which may change

direction at discrete time intervals. The model has four state variables:

x the position of the cart on the track,

� the angle of the pole with the vertical,

_x the cart velocity, and

_
� the angle velocity of the pole.

Furthermore, a set of parameters specify the pole length and mass, cart mass, coe�cients of

friction between the cart and the track and at the hinge between the pole and the cart, the

control force magnitude, and the force due to gravity. The state space is partitioned on the

basis of the following quantisation thresholds:

1. x: �0:8;�2:4m,

2. �: 0;�1;�6;�12�,

3. _x: �0:5;�1 m/s,

4. _
�: �50;�1�/s.

This yields 3�6�3�3 = 162 regions corresponding to all of the combinations of the intervals.

The decoder output is a 162-dimensional vector. A negative reinforcement signal is provided

when the state vector gets out of the admissible range: when x > 2:4, x < �2:4, � > 12� or

� < �12�. The system has proved to solve the problem in about 75 learning steps.
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Figure 7.3: The cart-pole system.

7.4 Reinforcement learning versus optimal control

The objective of optimal control is generate control actions in order to optimize a prede�ned

performance measure. One technique to �nd such a sequence of control actions which de�ne an

optimal control policy is Dynamic Programming (DP). The method is based on the principle

of optimality, formulated by Bellman (Bellman, 1957): Whatever the initial system state, if

the �rst control action is contained in an optimal control policy, then the remaining control

actions must constitute an optimal control policy for the problem with as initial system state the

state remaining from the �rst control action. The `Bellman equations' follow directly from the

principle of optimality. Solving the equations backwards in time is called dynamic programming.

Assume that a performance measure J(xk;uk; k) =
PN

i=k r(xi;ui; i) with r being the

immediate costs, is to be minimized. The minimum costs Jmin of cost J can be derived by the

Bellman equations of DP. The equations for the discrete case are (White & Jordan, 1992):

Jmin(xk;uk; k) = min
u2U

[Jmin(xk+1;uk+1; k + 1) + r(xk;uk; k)] ; (7.17)

Jmin(xN ) = r(xN ): (7.18)

The strategy for �nding the optimal control actions is solving equation (7.17) and (7.18) from

which uk can be derived. This can be achieved backwards, starting at state xN . The require-

ments are a bounded N, and a model which is assumed to be an exact representation of the

system and the environment. The model has to provide the relation between successive system

states resulting from system dynamics, control actions and disturbances. In practice, a solution

can be derived only for a small N and simple systems. In order to deal with large or in�nity N,

the performance measure could be de�ned as a discounted sum of future costs as expressed by

equation 7.2.

Reinforcement learning provides a solution for the problem stated above without the use of

a model of the system and environment. RL is therefore often called an `heuristic' dynamic pro-

gramming technique (Barto, Sutton, & Watkins, 1990),(Sutton, Barto, & Wilson, 1992),(Wer-

bos, 1992). The most directly related RL-technique to DP is Q-learning (Watkins & Dayan,

1992). The basic idea in Q-learning is to estimate a function, Q, of states and actions, where

Q is the minimum discounted sum of future costs Jmin(xk;uk; k) (the name `Q-learning' comes

from Watkins' notation). For convenience, the notation with J is continued here:

Ĵ(xk;uk; k) = 
Jmin(xk+1;uk+1; k + 1) + r(xk;uk; k) (7.19)

The optimal control rule can be expressed in terms of Ĵ by noting that an optimal control action

for state xk is any action uk that minimizes Ĵ according to equation 7.6.

The estimate of minimum cost Ĵ is updated at time step k+1 according equation 7.5 . The
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temporal di�erence "(k) between the `true' and expected performance is again used:

"(k) =

�

 min

u2U
Ĵ(xk+1;uk+1; k + 1) + r(xk;uk; k)

�
� Ĵ(xk;uk; k)

Watkins has shown that the function converges under some pre-speci�ed conditions to the true

optimal Bellmann equation (Watkins & Dayan, 1992): (1) the critic is implemented as a look-up

table; (2) the learning parameter � must converge to zero; (3) all actions continue to be tried

from all states.
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8 Robot Control

An important area of application of neural networks is in the �eld of robotics. Usually, these

networks are designed to direct a manipulator, which is the most important form of the industrial

robot, to grasp objects, based on sensor data. Another applications include the steering and

path-planning of autonomous robot vehicles.

In robotics, the major task involves making movements dependent on sensor data. There

are four, related, problems to be distinguished (Craig, 1989):

Forward kinematics. Kinematics is the science of motion which treats motion without regard

to the forces which cause it. Within this science one studies the position, velocity, acceleration,

and all higher order derivatives of the position variables. A very basic problem in the study of

mechanical manipulation is that of forward kinematics. This is the static geometrical problem of

computing the position and orientation of the end-e�ector (`hand') of the manipulator. Speci�-

cally, given a set of joint angles, the forward kinematic problem is to compute the position and

orientation of the tool frame relative to the base frame (see �gure 8.1).

1

4

3

2

tool frame

base frame

Figure 8.1: An exemplar robot manipulator.

Inverse kinematics. This problem is posed as follows: given the position and orientation of

the end-e�ector of the manipulator, calculate all possible sets of joint angles which could be used

to attain this given position and orientation. This is a fundamental problem in the practical use

of manipulators.

The inverse kinematic problem is not as simple as the forward one. Because the kinematic

equations are nonlinear, their solution is not always easy or even possible in a closed form. Also,

the questions of existence of a solution, and of multiple solutions, arise.

Solving this problem is a least requirement for most robot control systems.
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Dynamics. Dynamics is a �eld of study devoted to studying the forces required to cause

motion. In order to accelerate a manipulator from rest, glide at a constant end-e�ector velocity,

and �nally decelerate to a stop, a complex set of torque functions must be applied by the joint

actuators. In dynamics not only the geometrical properties (kinematics) are used, but also the

physical properties of the robot are taken into account. Take for instance the weight (inertia)

of the robotarm, which determines the force required to change the motion of the arm. The

dynamics introduces two extra problems to the kinematic problems.

1. The robot arm has a `memory'. Its responds to a control signal depends also on its history

(e.g. previous positions, speed, acceleration).

2. If a robot grabs an object then the dynamics change but the kinematics don't. This is

because the weight of the object has to be added to the weight of the arm (that's why

robot arms are so heavy, making the relative weight change very small).

Trajectory generation. To move a manipulator from here to there in a smooth, controlled

fashion each joint must be moved via a smooth function of time. Exactly how to compute these

motion functions is the problem of trajectory generation.

In the �rst section of this chapter we will discuss the problems associated with the positioning

of the end-e�ector (in e�ect, representing the inverse kinematics in combination with sensory

transformation). Section 8.2 discusses a network for controlling the dynamics of a robot arm.

Finally, section 8.3 describes neural networks for mobile robot control.

8.1 End-e�ector positioning

The �nal goal in robot manipulator control is often the positioning of the hand or end-e�ector in

order to be able to, e.g., pick up an object. With the accurate robot arm that are manufactured,

this task is often relatively simple, involving the following steps:

1. determine the target coordinates relative to the base of the robot. Typically, when this

position is not always the same, this is done with a number of �xed cameras or other

sensors which observe the work scene, from the image frame determine the position of the

object in that frame, and perform a pre-determined coordinate transformation;

2. with a precise model of the robot (supplied by the manufacturer), calculate the joint angles

to reach the target (i.e., the inverse kinematics). This is a relatively simple problem;

3. move the arm (dynamics control) and close the gripper.

The arm motion in point 3 is discussed in section 8.2. Gripper control is not a trivial matter at

all, but we will not focus on that.

Involvement of neural networks. So if these parts are relatively simple to solve with a

high accuracy, why involve neural networks? The reason is the applicability of robots. When

`traditional' methods are used to control a robot arm, accurate models of the sensors and manip-

ulators (in some cases with unknown parameters which have to be estimated from the system's

behaviour; yet still with accurate models as starting point) are required and the system must

be calibrated. Also, systems which su�er from wear-and-tear (and which mechanical systems

don't?) need frequent recalibration or parameter determination. Finally, the development of

more complex (adaptive!) control methods allows the design and use of more 
exible (i.e., less

rigid) robot systems, both on the sensory and motory side.
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8.1.1 Camera{robot coordination is function approximation

The system we focus on in this section is a work 
oor observed by a �xed cameras, and a robot

arm. The visual system must identify the target as well as determine the visual position of the

end-e�ector.

The target position xtarget together with the visual position of the hand xhand are input to

the neural controller N (�). This controller then generates a joint position � for the robot:

� = N (xtarget;xhand): (8.1)

We can compare the neurally generated � with the optimal �0 generated by a �ctitious perfect

controller R(�):
�0 = R(xtarget; xhand): (8.2)

The task of learning is to make the N generate an output `close enough' to �0.

There are two problems associated with teaching N (�):
1. generating learning samples which are in accordance with eq. (8.2). This is not trivial,

since in useful applications R(�) is an unknown function. Instead, a form of self-supervised

or unsupervised learning is required. Some examples to solve this problem are given below;

2. constructing the mapping N (�) from the available learning samples. When the (usually

randomly drawn) learning samples are available, a neural network uses these samples to

represent the whole input space over which the robot is active. This is evidently a form

of interpolation, but has the problem that the input space is of a high dimensionality, and

the samples are randomly distributed.

We will discuss three fundamentally di�erent approaches to neural networks for robot end-

e�ector positioning. In each of these approaches, a solution will be found for both the learning

sample generation and the function representation.

Approach 1: Feed-forward networks

When using a feed-forward system for controlling the manipulator, a self-supervised learning

system must be used.

One such a system has been reported by Psaltis, Sideris and Yamamura (Psaltis, Sideris, &

Yamamura, 1988). Here, the network, which is constrained to two-dimensional positioning of

the robot arm, learns by experimentation. Three methods are proposed:

1. Indirect learning.

In indirect learning, a Cartesian target point x in world coordinates is generated, e.g.,

by a two cameras looking at an object. This target point is fed into the network, which

generates an angle vector �. The manipulator moves to position �, and the cameras

determine the new position x0 of the end-e�ector in world coordinates. This x0 again is

input to the network, resulting in �0. The network is then trained on the error �1 = ���0
(see �gure 8.2).

However, minimisation of �1 does not guarantee minimisation of the overall error � = x�x0.
For example, the network often settles at a `solution' that maps all x's to a single � (i.e.,

the mapping I).

2. General learning.

The method is basically very much like supervised learning, but here the plant input

� must be provided by the user. Thus the network can directly minimise j� � �0j. The

success of this method depends on the interpolation capabilities of the network. Correct

choice of � may pose a problem.
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Figure 8.2: Indirect learning system for robotics. In each cycle, the network is used in two di�erent

places: �rst in the forward step, then for feeding back the error.

3. Specialised learning.

Keep in mind that the goal of the training of the network is to minimise the error at

the output of the plant: � = x � x0. We can also train the network by `backpropagating'

this error trough the plant (compare this with the backpropagation of the error in Chap-

ter 4). This method requires knowledge of the Jacobian matrix of the plant. A Jacobian

matrix of a multidimensional function F is a matrix of partial derivatives of F , i.e., the

multidimensional form of the derivative. For example, if we have Y = F (X), i.e.,

y1 = f1(x1; x2; : : : ; xn);

y2 = f2(x1; x2; : : : ; xn);

�
�
�

ym = fm(x1; x2; : : : ; xn)

then

�y1 =
@f1

@x1

�x1 +
@f1

@x2

�x2 + : : :+
@f1

@xn
�xn;

�y2 =
@f2

@x1
�x1 +

@f2

@x2
�x2 + : : :+

@f2

@xn
�xn;

�
�
�

�ym =
@fm

@x1

�x1 +
@fm

@x2

�x2 + : : : +
@fm

@xn
�xn

or

�Y =
@F

@X

�X: (8.3)

Eq. (8.3) is also written as

�Y = J(X)�X (8.4)

where J is the Jacobian matrix of F . So, the Jacobian matrix can be used to calculate the

change in the function when its parameters change.

Now, in this case we have

Jij =

"
@Pi

@�j

#
(8.5)

where Pi(�) the ith element of the plant output for input �. The learning rule applied

here regards the plant as an additional and unmodi�able layer in the neural network. The
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ε

θ
Plant

Network
Neuralx x’θ

Figure 8.3: The system used for specialised learning.

total error � = x � x0 is propagated back through the plant by calculating the �j as in

eq. (4.14):

�j = F0(sj)
X
i

�i
@Pi(�)

@�j
;

�i = xi � x
0

i;

where i iterates over the outputs of the plant. When the plant is an unknown function,
@Pi(�)
@�j

can be approximated by

@Pi(�)

@�j
� Pi(�+ h�jej)� Pi(�)

h

(8.6)

where ej is used to change the scalar �j into a vector. This approximate derivative can

be measured by slightly changing the input to the plant and measuring the changes in the

output.

A somewhat similar approach is taken in (Kr�ose, Korst, & Groen, 1990) and (Smagt & Kr�ose,

1991). Again a two-layer feed-forward network is trained with back-propagation. However,

instead of calculating a desired output vector the input vector which should have invoked the

current output vector is reconstructed, and back-propagation is applied to this new input vector

and the existing output vector.

The con�guration used consists of a monocular manipulator which has to grasp objects. Due

to the fact that the camera is situated in the hand of the robot, the task is to move the hand

such that the object is in the centre of the image and has some predetermined size (in a later

article, a biologically inspired system is proposed (Smagt, Kr�ose, & Groen, 1992) in which the

visual 
ow-�eld is used to account for the monocularity of the system, such that the dimensions

of the object need not to be known anymore to the system).

One step towards the target consists of the following operations:

1. measure the distance from the current position to the target position in camera domain,

x;

2. use this distance, together with the current state � of the robot, as input for the neural

network. The network then generates a joint displacement vector ��;

3. send �� to the manipulator;

4. again measure the distance from the current position to the target position in camera

domain, x0;

5. calculate the move made by the manipulator in visual domain, x� t+1
t Rx

0, where t+1
t R is

the rotation matrix of the second camera image with respect to the �rst camera image;
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6. teach the learning pair (x� t+1
t Rx

0
;�;��) to the network.

This system has shown to learn correct behaviour in only tens of iterations, and to be very

adaptive to changes in the sensor or manipulator (Smagt & Kr�ose, 1991; Smagt, Groen, &

Kr�ose, 1993).

By using a feed-forward network, the available learning samples are approximated by a single,

smooth function consisting of a summation of sigmoid functions. As mentioned in section 4, a

feed-forward network with one layer of sigmoid units is capable of representing practically any

function. But how are the optimal weights determined in �nite time to obtain this optimal

representation? Experiments have shown that, although a reasonable representation can be

obtained in a short period of time, an accurate representation of the function that governs the

learning samples is often not feasible or extremely di�cult (Jansen et al., 1994). The reason

for this is the global character of the approximation obtained with a feed-forward network with

sigmoid units: every weight in the network has a global e�ect on the �nal approximation that

is obtained.

Building local representations is the obvious way out: every part of the network is responsible

for a small subspace of the total input space. Thus accuracy is obtained locally (Keep It Small

& Simple). This is typically obtained with a Kohonen network.

Approach 2: Topology conserving maps

Ritter, Martinetz, and Schulten (Ritter, Martinetz, & Schulten, 1989) describe the use of a

Kohonen-like network for robot control. We will only describe the kinematics part, since it is

the most interesting and straightforward.

The system described by Ritter et al. consists of a robot manipulator with three degrees of

freedom (orientation of the end-e�ector is not included) which has to grab objects in 3D-space.

The system is observed by two �xed cameras which output their (x; y) coordinates of the object

and the end e�ector (see �gure 8.4).

Figure 8.4: A Kohonen network merging the output of two cameras.

Each run consists of two movements. In the gross move, the observed location of the object

x (a four-component vector) is input to the network. As with the Kohonen network, the neuron

k with highest activation value is selected as winner, because its weight vector wk is nearest to

x. The neurons, which are arranged in a 3-dimensional lattice, correspond in a 1�1 fashion with
subregions of the 3D workspace of the robot, i.e., the neuronal lattice is a discrete representation

of the workspace. With each neuron a vector � and Jacobian matrix A are associated. During

gross move �k is fed to the robot which makes its move, resulting in retinal coordinates xg of

the end-e�ector. To correct for the discretisation of the working space, an additional move is
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made which is dependent of the distance between the neuron and the object in space wk � x;
this small displacement in Cartesian space is translated to an angle change using the Jacobian

Ak:

�
�nal = �k +Ak(x�wk) (8.7)

which is a �rst-order Taylor expansion of ��nal. The �nal retinal coordinates of the end-e�ector

after this �ne move are in xf .

Learning proceeds as follows: when an improved estimate (�; A)� has been found, the fol-

lowing adaptations are made for all neurons j:

wj
new = wj

old + 
(t) gjk(t)
�
x�wj

old
�
;

(�; A)newj = (�; A)oldj + 

0(t) g0jk(t)

�
(�; A)�j � (�; A)oldj

�
:

If gjk(t) = g
0

jk(t) = �jk, this is similar to perceptron learning. Here, as with the Kohonen

learning rule, a distance function is used such that gjk(t) and g
0

jk(t) are Gaussians depending on

the distance between neurons j and k with a maximum at j = k (cf. eq. (6.6)).

An improved estimate (�; A)� is obtained as follows.

�
� = �k +Ak(x� xf ); (8.8)

A
� = Ak +Ak(x�wk � xf + xg)�

(xf � xg)T
kxf � xgk2

(8.9)

= Ak + (���Ak�x)
�xT

k�xk2 :

In eq. (8.8), the �nal error x� xf in Cartesian space is translated to an error in joint space via

multiplication by Ak. This error is then added to �k to constitute the improved estimate ��

(steepest descent minimisation of error).

In eq. (8.9), �x = xf�xg, i.e., the change in retinal coordinates of the end-e�ector due to the
�ne movement, and �� = Ak(x�wk), i.e., the related joint angles during �ne movement. Thus

eq. (8.9) can be recognised as an error-correction rule of the Widrow-Ho� type for Jacobians A.

It appears that after 6,000 iterations the system approaches correct behaviour, and that after

30,000 learning steps no noteworthy deviation is present.

8.2 Robot arm dynamics

While end-e�ector positioning via sensor{robot coordination is an important problem to solve,

the robot itself will not move without dynamic control of its limbs.

Again, accurate control with non-adaptive controllers is possible only when accurate models

of the robot are available, and the robot is not too susceptible to wear-and-tear. This requirement

has led to the current-day robots that are used in many factories. But the application of neural

networks in this �eld changes these requirements.

One of the �rst neural networks which succeeded in doing dynamic control of a robot arm

was presented by Kawato, Furukawa, and Suzuki (Kawato, Furukawa, & Suzuki, 1987). They

describe a neural network which generates motor commands from a desired trajectory in joint

angles. Their system does not include the trajectory generation or the transformation of visual

coordinates to body coordinates.

The network is extremely simple. In fact, the system is a feed-forward network, but by

carefully choosing the basis functions, the network can be restricted to one learning layer such

that �nding the optimal is a trivial task. In this case, the basis functions are thus chosen that

the function that is approximated is a linear combination of those basis functions. This approach

is similar to that presented in section 4.5.
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Dynamics model. The manipulator used consists of three joints as the manipulator in �g-

ure 8.1 without wrist joint. The desired trajectory �d(t), which is generated by another subsys-

tem, is fed into the inverse-dynamics model (�gure 8.5). The error between �d(t) and �(t) is

fed into the neural model.

manipulator

model

inverse dynamics

d

f

i
(t)θ

-+

+
+

K

(t)θ(t) (t)T T

T (t)

θ θ

Figure 8.5: The neural model proposed by Kawato et al.

The neural model, which is shown in �gure 8.6, consists of three perceptrons, each one

feeding in one joint of the manipulator. The desired trajectory �d = (�d1; �d2; �d3) is fed into 13

nonlinear subsystems. The resulting signals are weighted and summed, such that

Tik(t) =

13X
l=1

wlkxlk; (k = 1; 2; 3); (8.10)

with

xl1 = fl(�d1(t); �d2(t); �d3(t));

xl2 = xl3 = gl(�d1(t); �d2(t); �d3(t));

and fl and gl as in table 8.1.
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Figure 8.6: The neural network used by Kawato et al. There are three neurons, one per joint in the

robot arm. Each neuron feeds from thirteen nonlinear subsystems. The upper neuron is connected

to the rotary base joint (cf. joint 1 in �gure 8.1), the other two neurons to joints 2 and 3.
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l fl(�1; �2; �3) gl(�1; �2; �3)

1 ��1 ��2

2 ��1 sin
2
�2 ��3

3 ��1 cos
2
�2 ��2 cos �3

4 ��1 sin
2(�2 + �3) ��3 cos �3

5 ��1 cos
2(�2 + �3) _�21 sin �2 cos �2

6 ��1 sin �2 sin(�2 + �3) _�21 sin(�2 + �3) cos(�2 + �3)

7 _�1 _�2 sin �2 cos �2 _�21 sin �2 cos(�2 + �3)

8 _�1 _�2 sin(�2 + �3) cos(�2 + �3) _�21 cos �2 sin(�2 + �3)

9 _�1 _�2 sin �2 cos(�2 + �3) _�22 sin �3

10 _�1 _�2 cos �2 sin(�2 + �3) _�23 sin �3

11 _�1 _�3 sin(�2 + �3) cos(�2 + �3) _�2 _�3 sin �3

12 _�1 _�3 sin �2 cos(�2 + �3) _�2

13 _�1 _�3

Table 8.1: Nonlinear transformations used in the Kawato model.

The feedback torque Tf (t) in �gure 8.5 consists of

Tfk(t) = Kpk(�dk(t)� �k(t)) +Kvk
d�k(t)

dt

; (k = 1; 2; 3);

Kvk = 0 unless j�k(t)� �dk(objective point)j < ":

The feedback gains Kp and Kv were computed as (517:2; 746:0; 191:4)T and (16:2; 37:2; 8:4)T .

Next, the weights adapt using the delta rule




dwik

dt

= xikT1 = xik(Tfk � Tik); (k = 1; 2; 3): (8.11)

A desired move pattern is shown in �gure 8.7. After 20 minutes of learning the feedback

torques are nearly zero such that the system has successfully learned the transformation. Al-

though the applied patterns are very dedicated, training with a repetitive pattern sin(!kt), with

!1 : !2 : !3 = 1 :
p
2 :
p
3 is also successful.

1θ

302010
−π

0

π

t/s

Figure 8.7: The desired joint pattern for joints 1. Joints 2 and 3 have similar time patterns.

The usefulness of neural algorithms is demonstrated by the fact that novel robot architectures,

which no longer need a very rigid structure to simplify the controller, are now constructed. For

example, several groups (Katayama & Kawato, 1992; Hesselroth, Sarkar, Smagt, & Schulten,

1994) report on work with a pneumatic musculo-skeletal robot arm, with rubber actuators re-

placing the DC motors. The very complex dynamics and environmental temperature dependency

of this arm make the use of non-adaptive algorithms impossible, where neural networks succeed.
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8.3 Mobile robots

In the previous sections some applications of neural networks on robot arms were discussed. In

this section we focus on mobile robots. Basically, the control of a robot arm and the control

of a mobile robot is very similar: the (hierarchical) controller �rst plans a path, the path is

transformed from Cartesian (world) domain to the joint or wheel domain using the inverse

kinematics of the system and �nally a dynamic controller takes care of the mapping from set-

points in this domain to actuator signals. However, in practice the problems with mobile robots

occur more with path-planning and navigation than with the dynamics of the system. Two

examples will be given.

8.3.1 Model based navigation

Jorgensen (Jorgensen, 1987) describes a neural approach for path-planning. Robot path-planning

techniques can be divided into two categories. The �rst, called local planning relies on informa-

tion available from the current `viewpoint' of the robot. This planning is important, since it is

able to deal with fast changes in the environment. Unfortunately, by itself local data is generally

not adequate since occlusion in the line of sight can cause the robot to wander into dead end

corridors or choose non-optimal routes of travel. The second situation is called global path-

planning, in which case the system uses global knowledge from a topographic map previously

stored into memory. Although global planning permits optimal paths to be generated, it has its

weakness. Missing knowledge or incorrectly selected maps can invalidate a global path to an ex-

tent that it becomes useless. A possible third, `anticipatory' planning combined both strategies:

the local information is constantly used to give a best guess what the global environment may

contain.

Jorgensen investigates two issues associated with neural network applications in unstructured

or changing environments. First, can neural networks be used in conjunction with direct sensor

readings to associatively approximate global terrain features not observable from a single robot

perspective. Secondly, is a neural network fast enough to be useful in path relaxation planning,

where the robot is required to optimise motion and situation sensitive constraints.

For the �rst problem, the system had to store a number of possible sensor maps of the

environment. The robot was positioned in eight positions in each room and 180� sonar scans

were made from each position. Based on these data, for each room a map was made. To be able

to represent these maps in a neural network, the map was divided into 32 � 32 grid elements,

which could be projected onto the 32 � 32 nodes neural network. The maps of the di�erent

rooms were `stored' in a Hop�eld type of network. In the operational phase, the robot wanders

around, and enters an unknown room. It makes one scan with the sonar, which provides a partial

representation of the room map (see �gure 8.8). This pattern is clamped onto the network, which

will regenerate the best �tting pattern. With this information a global path-planner can be used.

The results which are presented in the paper are not very encouraging. With a network of 32�32
neurons, the total number of weights is 1024 squared, which costs more than 1 Mbyte of storage

if only one byte per weight is used. Also the speed of the recall is low: Jorgensen mentions a

recall time of more than two and a half hour on an IBM AT, which is used on board of the

robot.

Also the use of a simulated annealing paradigm for path planning is not proving to be an

e�ective approach. The large number of settling trials (> 1000) is far too slow for real time,

when the same functions could be better served by the use of a potential �eld approach or

distance transform.
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Figure 8.8: Schematic representation of the stored rooms, and the partial information which is

available from a single sonar scan.

8.3.2 Sensor based control

Very similar to the sensor based control for the robot arm, as described in the previous sections,

a mobile robot can be controlled directly using the sensor data. Such an application has been

developed at Carnegy-Mellon by Touretzky and Pomerleau. The goal of their network is to drive

a vehicle along a winding road. The network receives two type of sensor inputs from the sensory

system. One is a 30� 32 (see �gure 8.9) pixel image from a camera mounted on the roof of the

vehicle, where each pixel corresponds to an input unit of the network. The other input is an

8� 32 pixel image from a laser range �nder. The activation levels of units in the range �nder's

retina represent the distance to the corresponding objects.

units

units
45 output

29 hidden

sharp left sharp right

30x32 video input retina

8x32 range finder
input retina

straight ahead

66

Figure 8.9: The structure of the network for the autonomous land vehicle.

The network was trained by presenting it samples with as inputs a wide variety of road images

taken under di�erent viewing angles and lighting conditions. 1,200 Images were presented,
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40 times each while the weights were adjusted using the back-propagation principle. The authors

claim that once the network is trained, the vehicle can accurately drive (at about 5 km/hour)

along `: : : a path though a wooded area adjoining the Carnegie Mellon campus, under a variety

of weather and lighting conditions.' The speed is nearly twice as high as a non-neural algorithm

running on the same vehicle.

Although these results show that neural approaches can be possible solutions for the sensor

based control problem, there still are serious shortcomings. In simulations in our own laboratory,

we found that networks trained with examples which are provided by human operators are not

always able to �nd a correct approximation of the human behaviour. This is the case if the

human operator uses other information than the network's input to generate the steering signal.

Also the learning of in particular back-propagation networks is dependent on the sequence of

samples, and, for all supervised training methods, depends on the distribution of the training

samples.



9 Vision

9.1 Introduction

In this chapter we illustrate some applications of neural networks which deal with visual infor-

mation processing. In the neural literature we �nd roughly two types of problems: the modelling

of biological vision systems and the use of arti�cial neural networks for machine vision. We will

focus on the latter.

The primary goal of machine vision is to obtain information about the environment by

processing data from one or multiple two-dimensional arrays of intensity values (`images'), which

are projections of this environment on the system. This information can be of di�erent nature:

� recognition: the classi�cation of the input data in one of a number of possible classes;

� geometric information about the environment, which is important for autonomous systems;

� compression of the image for storage and transmission.

Often a distinction is made between low level (or early) vision, intermediate level vision and

high level vision. Typical low-level operations include image �ltering, isolated feature detection

and consistency calculations. At a higher level segmentation can be carried out, as well as

the calculation of invariants. The high level vision modules organise and control the 
ow of

information from these modules and combine this information with high level knowledge for

analysis.

Computer vision already has a long tradition of research, and many algorithms for image

processing and pattern recognition have been developed. There appear to be two computational

paradigms that are easily adapted to massive parallelism: local calculations and neighbourhood

functions. Calculations that are strictly localised to one area of an image are obviously easy to

compute in parallel. Examples are �lters and edge detectors in early vision. A cascade of these

local calculations can be implemented in a feed-forward network.

The �rst section describes feed-forward networks for vision. Section 9.3 shows how back-

propagation can be used for image compression. In the same section, it is shown that the

PCA neuron is ideally suited for image compression. Finally, sections 9.4 and 9.5 describe the

cognitron for optical character recognition, and relaxation networks for calculating depth from

stereo images.

9.2 Feed-forward types of networks

The early feed-forward networks as the perceptron and the adaline were essentially designed to

be be visual pattern classi�ers. In principle a multi-layer feed-forward network is able to learn to

classify all possible input patterns correctly, but an enormous amount of connections is needed

(for the perceptron, Minsky showed that many problems can only be solved if each hidden unit is

97
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connected to all inputs). The question is whether such systems can still be regarded as `vision'

systems. No use is made of the spatial relationships in the input patterns and the problem

of classifying a set of `real world' images is the same as the problem of classifying a set of

arti�cial random dot patterns which are, according to Smeulders, no `images.' For that reason,

most successful neural vision applications combine self-organising techniques with a feed-forward

architecture, such as for example the neocognitron (Fukushima, 1988), described in section 9.4.

The neocognitron performs the mapping from input data to output data by a layered structure

in which at each stage increasingly complex features are extracted. The lower layers extract

local features such as a line at a particular orientation and the higher layers aim to extract more

global features.

Also there is the problem of translation invariance: the system has to classify a pattern

correctly independent of the location on the `retina.' However, a standard feed-forward network

considers an input pattern which is translated as a totally `new' pattern. Several attempts have

been described to overcome this problem, one of the more exotic ones by Widrow (Widrow,

Winter, & Baxter, 1988) as a layered structure of adalines.

9.3 Self-organising networks for image compression

In image compression one wants to reduce the number of bits required to store or transmit an

image. We can either require a perfect reconstruction of the original or we can accept a small

deterioration of the image. The former is called a lossless coding and the latter a lossy coding.

In this section we will consider lossy coding of images with neural networks.

The basic idea behind compression is that an n-dimensional stochastic vector n, (part of)

the image, is transformed into an m-dimensional stochastic vector

m = Tn: (9.1)

After transmission or storage of this vector ~m, a discrete version of m, we can make a recon-

struction of n by some sort of inverse transform ~T so that the reconstructed signal equals

~n = ~T~n: (9.2)

The error of the compression and reconstruction stage together can be given as

� = E [kn� ~nk] : (9.3)

There is a trade-o� between the dimensionality of m and the error �. As one decreases the

dimensionality of m the error increases and vice versa, i.e., a better compression leads to a

higher deterioration of the image. The basic problem of compression is �nding T and ~T such

that the information in m is as compact as possible with acceptable error �. The de�nition of

acceptable depends on the application area.

The cautious reader has already concluded that dimension reduction is in itself not enough to

obtain a compression of the data. The main importance is that some aspects of an image are more

important for the reconstruction then others. For example, the mean grey level and generally

the low frequency components of the image are very important, so we should code these features

with high precision. Other, like high frequency components, are much less important so these

can be coarse-coded. So, when we reduce the dimension of the data, we are actually trying to

concentrate the information of the data in a few numbers (the low frequency components) which

can be coded with precision, while throwing the rest away (the high frequency components).

In this section we will consider coding an image of 256 � 256 pixels. It is a bit tedious to

transform the whole image directly by the network. This requires a huge amount of neurons.

Because the statistical description over parts of the image is supposed to be stationary, we can
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break the image into 1024 blocks of size 8� 8, which is large enough to entail a local statistical

description and small enough to be managed. These blocks can then be coded separately, stored

or transmitted, where after a reconstruction of the whole image can be made based on these

coded 8� 8 blocks.

9.3.1 Back-propagation

The process above can be interpreted as a 2-layer neural network. The inputs to the network

are the 8 � 8 patters and the desired outputs are the same 8 � 8 patterns as presented on the

input units. This type of network is called an auto-associator.

After training with a gradient search method, minimising �, the weights between the �rst

and second layer can be seen as the coding matrix T and between the second and third as the

reconstruction matrix ~T.

If the number of hidden units is smaller then the number of input (output) units, a com-

pression is obtained, in other words we are trying to squeeze the information through a smaller

channel namely the hidden layer.

This network has been used for the recognition of human faces by Cottrell (Cottrell, Munro,

& Zipser, 1987). He uses an input and output layer of 64�64 units (!) on which he presented the
whole face at once. The hidden layer, which consisted of 64 units, was classi�ed with another

network by means of a delta rule. Is this complex network invariant to translations in the input?

9.3.2 Linear networks

It is known from statistics that the optimal transform from an n-dimensional to anm-dimensional

stochastic vector, optimal in the sense that � contains the lowest energy possible, equals the

concatenation of the �rst m eigenvectors of the correlation matrix R of N. So if (e1;e2; ::;en)

are the eigenvectors of R, ordered in decreasing corresponding eigenvalue, the transformation

matrix is given as T = [e1e2 : : :e2]
T
.

In section 6.3.1 a linear neuron with a normalised Hebbian learning rule was able to learn

the eigenvectors of the correlation matrix of the input patterns. The de�nition of the optimal

transform given above, suits exactly in the PCA network we have described.

So we end up with a 64 �m � 64 network, where m is the desired number of hidden units

which is coupled to the total error �. Since the eigenvalues are ordered in decreasing values,

which are the outputs of the hidden units, the hidden units are ordered in importance for the

reconstruction.

Sanger (Sanger, 1989) used this implementation for image compression. The test image is

shown in �gure 9.1. It is 256� 256 with 8 bits/pixel.

After training the image four times, thus generating 4� 1024 learning patterns of size 8� 8,

the weights of the network converge into �gure 9.2.

9.3.3 Principal components as features

If parts of the image are very characteristic for the scene, like corners, lines, shades etc., one

speaks of features of the image. The extraction of features can make the image understanding

task on a higher level much easer. If the image analysis is based on features it is very important

that the features are tolerant of noise, distortion etc.

From an image compression viewpoint it would be smart to code these features with as little

bits as possible, just because the de�nition of features was that they occur frequently in the

image.

So one can ask oneself if the two described compression methods also extract features from

the image. Indeed this is true and can most easily be seen in �g. 9.2. It might not be clear

directly, but one can see that the weights are converged to:
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Figure 9.1: Input image for the network. The image is divided into 8� 8 blocks which are fed to the

network.

neuronneuron

1 2
neuronneuronneuron

0

neuron
3 4 5

76
neuron neuron

(unused)

ordering
of the neurons:

Figure 9.2: Weights of the PCA network. The �nal weights of the network trained on the test

image. For each neuron, an 8� 8 rectangle is shown, in which the grey level of each of the elements

represents the value of the weight. Dark indicates a large weight, light a small weight.

� neuron 0: the mean grey level;

� neuron 1 and neuron 2: the �rst order gradients of the image;

� neuron 3 : : : neuron 5: second orders derivates of the image.

The features extracted by the principal component network are the gradients of the image.

9.4 The cognitron and neocognitron

Yet another type of unsupervised learning is found in the cognitron, introduced by Fukushima as

early as 1975 (Fukushima, 1975). This network, with primary applications in pattern recognition,

was improved at a later stage to incorporate scale, rotation, and translation invariance resulting

in the neocognitron (Fukushima, 1988), which we will not discuss here.

9.4.1 Description of the cells

Central in the cognitron is the type of neuron used. Whereas the Hebb synapse (unit k, say),

which is used in the perceptron model, increases an incoming weight (wjk) if and only if the
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incoming signal (yj) is high and a control input is high, the synapse introduced by Fukushima

increases (the absolute value of) its weight (jwjkj) only if it has positive input yj and a maximum
activation value yk = max(yk1 ; yk2 ; : : : ; ykn), where k1; k2; : : : ; kn are all `neighbours' of k. Note

that this learning scheme is competitive and unsupervised, and the same type of neuron has,

at a later stage, been used in the competitive learning network (section 6.1) as well as in other

unsupervised networks.

Fukushima distinguishes between excitatory inputs and inhibitory inputs. The output of an

excitatory cell u is given by1

u(k) = F
�
1 + e

1 + h

� 1

�
= F

�
e� h

1 + h

�
; (9.4)

where e is the excitatory input from u-cells and h the inhibitory input from v-cells. The activation

function is

F(x) =
�
x if x � 0,

0 otherwise.
(9.5)

When the inhibitory input is small, i.e., h� 1, u(k) can be approximated by u(k) = e� h,

which agrees with the formula for a conventional linear threshold element (with a threshold of

zero).

When both the excitatory and inhibitory inputs increase in proportion, i.e.,

e = �x; h = �x (9.6)

(�, � constants) and � > �, then eq. (9.4) can be transformed into

u(i) =
(�� �)x

1 + �x

=
�� �

2�

�
1 + tanh(1

2
log �x)

�
(9.7)

i.e., a squashing function as in �gure 2.2.

9.4.2 Structure of the cognitron

The basic structure of the cognitron is depicted in �gure 9.3.
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Figure 9.3: The basic structure of the cognitron.

The cognitron has a multi-layered structure. The l-th layer Ul consists of excitatory neurons

ul(n) and inhibitory neurons vl(n), where n = (nx; ny) is a two-dimensional location of the cell.

1Here our notational system fails. We adhere to Fukushima's symbols.
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A cell ul(n) receives inputs via modi�able connections al(v;n) from neurons ul�1(n+v) and

connections bl(n) from neurons vl�1(n), where v is in the connectable area (cf. area of atten-

tion) of the neuron. Furthermore, an inhibitory cell vl�1(n) receives inputs via �xed excitatory

connections cl�1(v) from the neighbouring cells ul�1(n + v), and yields an output equal to its

weighted input:

vl�1(n) =
X
v

cl�1(v)ul�1(n+ v): (9.8)

where
P

v
cl�1(v) = 1 and are �xed.

It can be shown that the growing of the synapses (i.e., modi�cation of the a and b weights)

ensures that, if an excitatory neuron has a relatively large response, the excitatory synapses

grow faster than the inhibitory synapses, and vice versa.

Receptive region

For each cell in the cascaded layers described above a connectable area must be established. A

connection scheme as in �gure 9.4 is used: a neuron in layer Ul connects to a small region in

layer Ul�1.

""
21100 UUUUU

Figure 9.4: Cognitron receptive regions.

If the connection region of a neuron is constant in all layers, a too large number of layers is

needed to cover the whole input layer. On the other hand, increasing the region in later layers

results in so much overlap that the output neurons have near identical connectable areas and

thus all react similarly. This again can be prevented by increasing the size of the vicinity area in

which neurons compete, but then only one neuron in the output layer will react to some input

stimulus. This is in contradiction with the behaviour of biological brains.

A solution is to distribute the connections probabilistically such that connections with a

large deviation are less numerous.

9.4.3 Simulation results

In order to illustrate the working of the network, a simulation has been run with a four-layered

network with 16� 16 neurons in each layer. The network is trained with four learning patterns,

consisting of a vertical, a horizontal, and two diagonal lines. Figure 9.5 shows the activation

levels in the layers in the �rst two learning iterations.

After 20 learning iterations, the learning is halted and the activation values of the neurons

in layer 4 are fed back to the input neurons; also, the maximum output neuron alone is fed back,

and thus the input pattern is `recognised' (see �gure 9.6).
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b.a.

Figure 9.5: Two learning iterations in the cognitron.

Four learning patterns (one in each row) are shown in iteration 1 (a.) and 2 (b.). Each

column in a. and b. shows one layer in the network. The activation level of each neuron is

shown by a circle. A large circle means a high activation. In the �rst iteration (a.), a structure

is already developing in the second layer of the network. In the second iteration, the second

layer can distinguish between the four patterns.

9.5 Relaxation types of networks

As demonstrated by the Hop�eld network, a relaxation process in a connectionist network can

provide a powerful mechanism for solving some di�cult optimisation problems. Many vision

problems can be considered as optimisation problems, and are potential candidates for an im-

plementation in a Hop�eld-like network. A few examples that are found in the literature will be

mentioned here.

9.5.1 Depth from stereo

By observing a scene with two cameras one can retrieve depth information out of the images

by �nding the pairs of pixels in the images that belong to the same point of the scene. The

calculation of the depth is relatively easy; �nding the correspondences is the main problem. One

solution is to �nd features such as corners and edges and match those, reducing the computational

complexity of the matching. Marr (Marr, 1982) showed that the correspondence problem can

be solved correctly when taking into account the physical constraints underlying the process.

Three matching criteria were de�ned:

� Compatibility: Two descriptive elements can only match if they arise from the same phys-

ical marking (corners can only match with corners, `blobs' with `blobs,' etc.);

� Uniqueness: Almost always a descriptive element from the left image corresponds to exactly

one element in the right image and vice versa;

� Continuity: The disparity of the matches varies smoothly almost everywhere over the

image.
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d.c.

b.a.

Figure 9.6: Feeding back activation values in the cognitron.

The four learning patterns are now successively applied to the network (row 1 of �gures

a{d). Next, the activation values of the neurons in layer 4 are fed back to the input (row 2

of �gures a{d). Finally, all the neurons except the most active in layer 4 are set to 0, and

the resulting activation values are again fed back (row 3 of �gures a{d). After as little as 20

iterations, the network has shown to be rather robust.

Marr's `cooperative' algorithm (also a `non-cooperative' or local algorithm has been described

(Marr, 1982)) is able to calculate the disparity map from which the depth can be reconstructed.

This algorithm is some kind of neural network, consisting of neurons N(x; y; d), where neuron

N(x; y; d) represents the hypothesis that pixel (x; y) in the left image corresponds with pixel

(x+ d; y) in the right image. The update function is

N
t+1(x; y; d) = �

0
BBB@

X
x0;y0;d02

S(x;y;d)

N
t(x0; y0; d0)� �

X
x0;y0;d02

O(x;y;d)

N
t(x0 ; y0; d0) +N

0(x; y; d)

1
CCCA : (9.9)

Here, � is an inhibition constant, � is a threshold function, S(x; y; d) is the local excitatory

neighbourhood, and O(x; y; d) is the local inhibitory neighbourhood, which are chosen as follows:

S(x; y; d) = f (r; s; t) j (r = x _ r = x� d) ^ s = y g; (9.10)

O(x; y; d) = f (r; s; t) j d = t ^ k (r; s)� (x; y) k� w g: (9.11)
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The network is loaded with the cross correlation of the images at �rst: N
0(x; y; d) =

Il(x; y)Ir(x + d; y), where Il and Ir are the intensity matrices of the left and right image re-

spectively. This network state represents all possible matches of pixels. Then the set of possible

matches is reduced by recursive application of the update function until the state of the network

is stable.

The algorithm converges in about ten iterations. Then the disparity of a pixel (x; y) is

displayed by the �ring neuron in the set fN(r; s; d) j r = x; s = yg. In each of these sets there

should be exactly one neuron �ring, but if the algorithm could not compute the exact disparity,

for instance at hidden contours, there may be zero or more than one neurons �ring.

9.5.2 Image restoration and image segmentation

The restoration of degraded images is a branch of digital picture processing closely related to

image segmentation and boundary �nding. An analysis of the major applications and procedures

may be found in (Rosenfeld & Kak, 1982). An algorithm which is based on the minimisation

of an energy function and can very well be parallelised is given by Geman and Geman (Geman

& Geman, 1984). Their approach is based on stochastic modelling, in which image samples

are considered to be generated by a random process that changes its statistical properties from

region to region. The random process that that generates the image samples is a two-dimensional

analogue of a Markov process, called a Markov random �eld. Image segmentation is then

considered as a statistical estimation problem in which the system calculates the optimal estimate

of the region boundaries for the input image. Simultaneously estimation of the region properties

and boundary properties has to be performed, resulting in a set of nonlinear estimation equations

that de�ne the optimal estimate of the regions. The system must �nd the maximum a posteriori

probability estimate of the image segmentation. Geman and Geman showed that the problem can

be recast into the minimisation of an energy function, which, in turn, can be solved approximately

by optimisation techniques such as simulated annealing. The interesting point is that simulated

annealing can be implemented using a network with local connections, in which the network

iterates into a global solution using these local operations.

9.5.3 Silicon retina

Mead and his co-workers (Mead, 1989) have developed an analogue VLSI vision preprocessing

chip modelled after the retina. The design not only replicates many of the important functions

of the �rst stages of retinal processing, but it does so by replicating in a detailed way both

the structure and dynamics of the constituent biological units. The logarithmic compression

from photon input to output signal is accomplished by analogue circuits, while similarly space

and time averaging and temporal di�erentiation are accomplished by analogue processes and a

resistive network (see section 11.2.1).
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Part IV

IMPLEMENTATIONS
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Implementation of neural networks can be divided into three categories:

� software simulation;

� (hardware) emulation2;

� hardware implementation.

The distinction between the former two categories is not clear-cut. We will use the term sim-

ulation to describe software packages which can run on a variety of host machines (e.g., PYG-

MALION, the Rochester Connectionist Simulator, NeuralWare, Nestor, etc.). Implementation of

neural networks on general-purpose multi-processor machines such as the Connection Machine,

the Warp, transputers, etc., will be referred to as emulation. Hardware implementation will be

reserved for neuro-chips and the like which are speci�cally designed to run neural networks.

To evaluate and provide a taxonomy of the neural network simulators and emulators dis-

cussed, we will use the descriptors of table 9.1 (cf. (DARPA, 1988)).

1. Equation type: many networks are de�ned by the type of equation describing their operation. For

example, Grossberg's ART (cf. section 6.4) is described by the di�erential equation

dxk

dt
= �Axk + (B � xk)Ik � xk

X
j 6=k

Ij ; (9.12)

in which �Axk is a decay term, +BIk is an external input, �xkIk is a normalisation term, and �xk
P

j 6=k
Ij

is a neighbour shut-o� term for competition. Although di�erential equations are very powerful, they require

a high degree of 
exibility in the software and hardware and are thus di�cult to implement on special-

purpose machines. Other types of equations are, e.g., di�erence equations as used in the description of

Kohonen's topological maps (see section 6.2), and optimisation equations as used in back-propagation

networks.

2. Connection topology: the design of most general purpose computers includes random access memory

(RAM) such that each memory position can be accessed with uniform speed. Such designs always present

a trade-o� between size of memory and speed of access. The topology of neural networks can be matched

in a hardware design with fast local interconnections instead of global access. Most networks are more or

less local in their interconnections, and a global RAM is unnecessary.

3. Processing schema: although most arti�cial neural networks use a synchronous update, i.e., the output

of the network depends on the previous state of the network, asynchronous update, in which components

or blocks of components can be updated one by one, can be implemented much more e�ciently. Also,

continuous update is a possibility encountered in some implementations.

4. Synaptic transmission mode: most arti�cial neural networks have a transmission mode based on the

neuronal activation values multiplied by synaptic weights. In these models, the propagation time from one

neuron to another is neglected. On the other hand, biological neurons output a series of pulses in which the

frequency determines the neuron output, such that propagation times are an essential part of the model.

Currently, models arise which make use of temporal synaptic transmission (Murray, 1989; Tomlinson &

Walker, 1990).

Table 9.1: A possible taxonomy.

The following chapters describe general-purpose hardware which can be used for neural

network applications, and neuro-chips and other dedicated hardware.

2The term emulation (see, e.g., (Mallach, 1975) for a good introduction) in computer design means running

one computer to execute instructions speci�c to another computer. It is often used to provide the user with a

machine which is seemingly compatible with earlier models.
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10 General Purpose Hardware

Parallel computers (Almasi & Gottlieb, 1989) can be divided into several categories. One im-

portant aspect is the granularity of the parallelism. Broadly speaking, the granularity ranges

from coarse-grain parallelism, typically up to ten processors, to �ne-grain parallelism, up to

thousands or millions of processors.

Both �ne-grain and coarse-grain parallelism is in use for emulation of neural networks. The

former model, in which one or more processors can be used for each neuron, corresponds with

table 9.1's type 2, whereas the second corresponds with type 1. We will discuss one model of both

types of architectures: the (extremely) �ne-grain Connection Machine and coarse-grain Systolic

arrays, viz. the Warp computer. A more complete discussion should also include transputers

which are very popular nowadays due to their very high performance/price ratio (Group, 1987;

Board, 1989; Eckmiller, Hartmann, & Hauske, 1990). In this case, descriptor 1 of table 9.1 is

most applicable.

Besides the granularity, the computers can be categorised by their operation. The most

widely used categorisation is by Flynn (Flynn, 1972) (see table 10.1). It distinguishes two

types of parallel computers: SIMD (Single Instruction, Multiple Data) and MIMD (Multiple

Instruction, Multiple Data). The former type consists of a number of processors which execute

the same instructions but on di�erent data, whereas the latter has a separate program for each

processor. Fine-grain computers are usually SIMD, while coarse grain computers tend to be

MIMD (also in correspondence with table 9.1, entries 1 and 2).

Number of Data Streams

single multiple

Number of
Instruction
Streams

single SISD SIMD

(von Neumann) (vector, array)

multiple MISD MIMD

(pipeline?) (multiple micros)

Table 10.1: Flynn's classi�cation.

Table 10.2 shows a comparison of several types of hardware for neural network simulation.

The speed entry, measured in interconnects per second, is an important measure which is of-

ten used to compare neural network simulators. It measures the number of multiply-and-add

operations that can be performed per second. However, the comparison is not 100% honest:

it does not always include the time needed to fetch the data on which the operations are to

be performed, and may also ignore other functions required by some algorithms such as the

computation of a sigmoid function. Also, the speed is of course dependent of the algorithm

used.

111



112 CHAPTER 10. GENERAL PURPOSE HARDWARE

HARDWARE WORD STORAGE SPEED COST SPEED

LENGTH (K Intcnts) (K Int/s) (K$) / COST

WORKSTATIONS

Micro/Mini PC/AT 16 100 25 5 5.0

Computers Sun 3 32 250 250 20 12.5

VAX 32 100 100 300 0.33

Symbolics 32 32,000 35 100 0.35

Attached ANZA 8{32 500 45 10 4.5

Processors �� 1 32 1,000 10,000 15 667

Transputer 16 2,000 3,000 4 750

Bus-oriented Mark III, IV 16 1,000 500 75 6.7

MX/1{16 16 50,000 120,000 300 400

MASSIVELY CM{2 (64K) 32 64,000 13,000 2,000 6.5

PARALLEL Warp (10) 32 320 17,000 300 56.7

Warp (20) 32,000

Butter
y (64) 32 60,000 8,000 500 16

SUPER- Cray XMP 64 2,000 50,000 4,000 12.5

COMPUTERS

Table 10.2: Hardware machines for neural network simulation.
The authors are well aware that the mentioned computer architectures are archaic: : : current computer

architectures are several orders of magnitute faster. For instance, current day Sun Sparc machines (e.g., an

Ultra at 200 MHz) benchmark at almost 300,000 dhrystones per second, whereas the archaic Sun 3 benchmarks

at about 3,800. Prices of both machines (then vs. now) are approximately the same. Go �gure! Nevertheless,

the table gives an insight of the performance of di�erent types of architectures.

10.1 The Connection Machine

10.1.1 Architecture

One of the most outstanding �ne-grain SIMD parallel machines is Daniel Hillis' Connection Ma-

chine (Hillis, 1985; Corporation, 1987), originally developed at MIT and later built at Thinking

Machines Corporation. The original model, the CM{1, consists of 64K (65,536) one-bit proces-

sors, divided up into four units of 16K processors each. The units are connected via a cross-bar

switch (the nexus) to up to four front-end computers (see �gure 10.1). The large number of ex-

tremely simple processors make the machine a data parallel computer, and can be best envisaged

as active memory.

Each processor chip contains 16 processors, a control unit, and a router. It is connected

to a memory chip which contains 4K bits of memory per processor. Each processor consists

of a one-bit ALU with three inputs and two outputs, and a set of registers. The control unit

decodes incoming instructions broadcast by the front-end computers (which can be DEX VAXes

or Symbolics Lisp machines). At any time, a processor may be either listening to the incoming

instruction or not.

The router implements the communication algorithm: each router is connected to its nearest

neighbours via a two-dimensional grid (the NEWS grid) for fast neighbour communication; also,

the chips are connected via a Boolean 12-cube, i.e., chips i and j are connected if and only if

ji� jj = 2k for some integer k. Thus at most 12 hops are needed to deliver a message. So there

are 4,096 routers connected by 24,576 bidirectional wires.

By slicing the memory of a processor, the CM can also implement virtual processors.

The CM{2 di�ers from the CM{1 in that it has 64K bits instead of 4K bits memory per

processor, and an improved I/O system.



10.1. THE CONNECTION MACHINE 113
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Figure 10.1: The Connection Machine system organisation.

10.1.2 Applicability to neural networks

There have been a few researchers trying to implement neural networks on the Connection

Machine (Blelloch & Rosenberg, 1987; Singer, 1990). Even though the Connection Machine has

a topology which matches the topology of most arti�cial neural networks very well, the relatively

slow message passing system makes the machine not very useful as a general-purpose neural

network simulator. It appears that the Connection Machine su�ers from a dramatic decrease in

throughput due to communication delays (Hummel, 1990). Furthermore, the cost/speed ratio

(see table 10.2) is very bad compared to, e.g., a transputer board. As an e�ect, the Connection

Machine is not widely used for neural network simulation.

One possible implementation is given in (Blelloch & Rosenberg, 1987). Here, a back-

propagation network is implemented by allocating one processor per unit and one per outgoing

weight and one per incoming weight. The processors are thus arranged that each processor for a

unit is immediately followed by the processors for its outgoing weights and preceded by those for

its incoming weights. The feed-forward step is performed by �rst clamping input units and next

executing a copy-scan operation by moving those activation values to the next k processors (the

outgoing weight processors). The weights then multiply themselves with the activation values

and perform a send operation in which the resulting values are sent to the processors allocated

for incoming weights. A plus-scan then sums these values to the next layer of units in the net-

work. The feedback step is executed similarly. Both the feed-forward and feedback steps can be

interleaved and pipelined such that no layer is ever idle. For example, for the feed-forward step,

a new pattern xp is clamped on the input layer while the next layer is computing on xp�1, etc.

To prevent ine�cient use of processors, one weight could also be represented by one processor.
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10.2 Systolic arrays

Systolic arrays (Kung & Leierson, 1979) take the advantage of laying out algorithms in two

dimensions. The design favours compute-bound as opposed to I/O-bound operations. The

name systolic is derived from the analogy of pumping blood through a heart and feeding data

through a systolic array.

A typical use is depicted in �gure 10.2. Here, two band matrices A and B are multiplied

and added to C, resulting in an output C + AB. Essential in the design is the reuse of data

elements, instead of referencing the memory each time the element is needed.

C+A*B

cell

systolic

c+a*b

b

b

a

a

c

a11

c11

11b

a 32 22a
12a

a 21
a 31

21b b 22 23b

b 1312b

21 12cc
c cc 22 1331

14233241c c c c

42 33 24c c c

3443 cc

Figure 10.2: Typical use of a systolic array.

The Warp computer, developed at Carnegie Mellon University, has been used for simulating

arti�cial neural networks (Pomerleau, Gusciora, Touretzky, & Kung, 1988) (see table 10.2). It

is a system with ten or more programmable one-dimensional systolic arrays. Two data streams,

one of which is bi-directional, 
ow through the processors (see �gure 10.3). To implement a

matrix product Wx + �, the W is not a stream as in �gure 10.2 but stored in the memory of

the processors.

Warp Interface & Host

address

X

Y
n2

cell

1

cell cell

Figure 10.3: The Warp system architecture.



11 Dedicated Neuro-Hardware

Recently, many neuro-chips have been designed and built. Although many techniques, such as

digital and analogue electronics, optical computers, chemical implementation, and bio-chips, are

investigated for implementing neuro-computers, only digital and analogue electronics, and in

a lesser degree optical implementations, are at present feasible techniques. We will therefore

concentrate on such implementations.

11.1 General issues

11.1.1 Connectivity constraints

Connectivity within a chip

A major problem with neuro-chips always is the connectivity. A single integrated circuit is, in

current-day technology, planar with limited possibility for cross-over connections. This poses

a problem. Whereas connectivity to nearest neighbour can be implemented without problems,

connectivity to the second nearest neighbour results in a cross-over of four which is already

problematic. On the other hand, full connectivity between a set of input and output units can

be easily attained when the input and output neurons are situated near two edges of the chip

(see �gure 11.1). Note that the number of neurons in the chip grows linearly with the size of

the chip, whereas in the earlier layout, the dependence is quadratic.

outputs

inputs

N

M

Figure 11.1: Connections between M input and N output neurons.

Connectivity between chips

To build large or layered ANN's, the neuro-chips have to be connected together. When only

few neurons have to be connected together, or the chips can be placed in subsequent rows in

feed-forward types of networks, this is no problem. But in other cases, when large numbers
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of neurons in one chip have to be connected to neurons in other chips, there are a number of

problems:

� designing chip packages with a very large number of input or output leads;

� fan-out of chips: each chip can ordinarily only send signals two a small number of other

chips. Ampli�ers are needed, which are costly in power dissipation and chip area;

� wiring.

A possible solution would be using optical interconnections. In this case, an external light source

would re
ect light on one set of neurons, which would re
ect part of this light using deformable

mirror spatial light modulator technology on to another set of neurons. Also under development

are three-dimensional integrated circuits.

11.1.2 Analogue vs. digital

Due to the similarity between arti�cial and biological neural networks, analogue hardware seems

a good choice for implementing arti�cial neural networks, resulting in cheaper implementations

which operate at higher speed. On the other hand, digital approaches o�er far greater 
exibility

and, not to be neglected, arbitrarily high accuracy. Also, digital chips can be designed without

the need of very advanced knowledge of the circuitry using CAD/CAM systems, whereas the

design of analogue chips requires good theoretical knowledge of transistor physics as well as

experience.

An advantage that analogue implementations have over digital neural networks is that they

closely match the physical laws present in neural networks (table 9.1, point 1). First of all,

weights in a neural network can be coded by one single analogue element (e.g., a resistor) where

several digital elements are needed1. Secondly, very simple rules as Kircho�'s laws2 can be used

to carry out the addition of input signals. As another example, Boltzmann machines (section 5.3)

can be easily implemented by amplifying the natural noise present in analogue devices.

11.1.3 Optics

As mentioned above, optics could be very well used to interconnect several (layers of) neurons.

One can distinguish two approaches. One is to store weights in a planar transmissive or re
ective

device (e.g., a spatial light modulator) and use lenses and �xed holograms for interconnection.

Figure 11.2 shows an implementation of optical matrix multiplication. When N is the linear

size of the optical array divided by wavelength of the light used, the array has capacity for N2

weights, so it can fully connect N neurons with N neurons (Fahrat, Psaltis, Prata, & Paek,

1985).

A second approach uses volume holographic correlators, o�ering connectivity between two

areas of N2 neurons for a total of N4 connections3. A possible use of such volume holograms

in an all-optical network would be to use the system for image completion (Abu-Mostafa &

Psaltis, 1987). A number of images could be stored in the hologram. The input pattern is

correlated with each of them, resulting in output patterns with a brightness varying with the

1On the other hand, the opposite can be found when considering the size of the element, especially when high

accuracy is needed. However, once arti�cial neural networks have outgrown rules like back-propagation, high

accuracy might not be needed.
2The Kircho� laws state that for two resistors R1 and R2 (1) in series, the total resistance can be calculated

using R = R1 + R2, and (2) in parallel, the total resistance can be found using 1=R = 1=R1 + 1=R2 (Feynman,

Leighton, & Sands, 1983).
3Well : : : not exactly. Due to di�raction, the total number of independent connections that can be stored in

an ideal medium is N3, i.e., the volume of the hologram divided by the cube of the wavelength. So, in fact N3=2

neurons can be connected with N
3=2 neurons.
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row 1
laser for

mask
weight
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Figure 11.2: Optical implementation of matrix multiplication.

degree of correlation. The images are fed into a threshold device which will conduct the image

with highest brightness better than others. This enhancement can be repeated for several loops.

11.1.4 Learning vs. non-learning

It is generally agreed that the major forte of neural networks is their ability to learn. Whereas a

network with �xed, pre-computed, weight values could have its merit in industrial applications,

on-line adaptivity remains a design goal for most neural systems.

With respect to learning, we can distinguish between the following levels:

1. �xed weights: the design of the network determines the weights. Examples are the

retina and cochlea chips of Carver Mead's group discussed below (cf. a ROM (Read-Only

Memory) in computer design);

2. pre-programmed weights: the weights in the network can be set only once, when the

chip is installed. Many optical implementations fall in this category (cf. PROM (Pro-

grammable ROM));

3. programmable weights: the weights can be set more than once by an external device

(cf. EPROM (Erasable PROM) or EEPROM (Electrically Erasable PROM));

4. on-site adapting weights: the learning mechanism is incorporated in the network

(cf. RAM (Random Access Memory)).

11.2 Implementation examples

11.2.1 Carver Mead's silicon retina

The chips devised by Carver Mead's group at Caltech (Mead, 1989) are heavily inspired by

biological neural networks. Mead attempts to build analogue neural chips which match biolog-

ical neurons as closely as possible, including extremely low power consumption, fully analogue

hardware, and operation in continuous time (table 9.1, point 3). One example of such a chip is

the Silicon Retina (Mead & Mahowald, 1988).
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Retinal structure

The o�-center retinal structure can be described as follows. Light is transduced to electrical

signals by photo-receptors which have a primary pathway through the triad synapses to the

bipolar cells. The bipolar cells are connected to the retinal ganglion cells which are the output

cells of the retina. The horizontal cells, which are also connected via the triad synapses to the

photo-receptors, are situated directly below the photo-receptors and have synapses connected to

the axons leading to the bipolar cells.

The system can be described in terms of the triad synapse's three elements:

1. the photo-receptor outputs the logarithm of the intensity of the light;

2. the horizontal cells form a network which averages the photo-receptor over space and time;

3. the output of the bipolar cell is proportional to the di�erence between the photo-receptor

output and the horizontal cell output.

The photo-receptor

The photo-receptor circuit outputs a voltage which is proportional to the logarithm of the

intensity of the incoming light. There are two important consequences:

1. several orders of magnitude of intensity can be handled in a moderate signal level range;

2. the voltage di�erence between two points is proportional to the contrast ratio of their

illuminance.

The photo-receptor can be implemented using a photo-detector, two FET's4 connected in series5

and one transistor (see �gure 11.3). The lowest photo-current is about 10�14A or 105 photons

Intensity

outV

outV

3.6

3.4

3.2

3.0

2.8

2.6

2.4

2.2
8765432

Figure 11.3: The photo-receptor used by Mead. To prevent current being drawn from the photo-

receptor, the output is only connected to the gate of the transistor.

per second, corresponding with a moonlit scene.

4Field E�ect Transistor
5A detailed description of the electronics involved is out of place here. However, we will provide �gures where

useful. See (Mead, 1989) for an in-depth study.
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Horizontal resistive layer

Each photo-receptor is connected to its six neighbours via resistors forming a hexagonal array.

The voltage at every node in the network is a spatially weighted average of the photo-receptor

inputs, such that farther away inputs have less in
uence (see �gure 11.4(a)).

(b)(a)

+

+
−

−

ganglion
output

photo-
receptor

Figure 11.4: The resistive layer (a) and, enlarged, a single node (b).

Bipolar cell

The output of the bipolar cell is proportional to the di�erence between the photo-receptor output

and the voltage of the horizontal resistive layer. The architecture is shown in �gure 11.4(b). It

consists of two elements: a wide-range ampli�er which drives the resistive network towards

the photo-receptor output, and an ampli�er sensing the voltage di�erence between the photo-

receptor output and the network potential.

Implementation

A chip was built containing 48� 48 pixels. The output of every pixel can be accessed indepen-

dently by providing the chip with the horizontal and vertical address of the pixel. The selectors

can be run in two modes: static probe or serial access. In the �rst mode, a single row and

column are addressed and the output of a single pixel is observed as a function of time. In the

second mode, both vertical and horizontal shift registers are clocked to provide a serial scan of

the processed image for display on a television display.

Performance

Several experiments show that the silicon retina performs similarly as biological retina (Mead &

Mahowald, 1988). Similarities are shown between sensitivity for intensities; time responses for

a single output when 
ashes of light are input; response to contrast edges.

11.2.2 LEP's LNeuro chip

A radically di�erent approach is the LNeuro chip developed at the Laboratoires d'Electronique

Philips (LEP) in France (Theeten, Duranton, Mauduit, & Sirat, 1990; Duranton & Sirat, 1989).

Whereas most neuro-chips implement Hop�eld networks (section 5.2) or, in some cases, Kohonen
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networks (section 6.2) (due to the fact that these networks have local learning rules), these digital

neuro-chips can be con�gured to incorporate any learning rule and network topology.

Architecture

The LNeuro chip, depicted in �gure 11.5, consists of an multiply-and-add or relaxation part,

and a learning part. The LNeuro 1.0 has a parallelism of 16. The weights wij are 8 bits long in

the relaxation phase. and 16 bit in the learning phase.

δj

j

j

a

LP

processor
learning

neural state registers

learning functions

learning register

memory

synaptic

readable

and

loadable

parallel

control
and

function
linear
non-

control
learning

accumulator

alu

adders
of

tree

mul

mul

mul

mul

Fct. Fct. Fct. Fct.

Figure 11.5: The LNeuro chip. For clarity, only four neurons are drawn.

Multiply-and-add

The multiply-and-add in fact performs a matrix multiplication

yk(t+ 1) = F
0
@X

j

wjkyj(t)

1
A
: (11.1)

The input activations yk are kept in the neural state registers. For each neural state there are

two registers. These can be used to implement synchronous or asynchronous update. In the

former mode, the computed state of neurons wait in registers until all states are known; then

the whole register is written into the register used for the calculations. In asynchronous mode,

however, every new state is directly written into the register used for the next calculation.

The arithmetical logical unit (ALU) has an external input to allow for accumulation of

external partial products. This can be used to construct larger, structured, or higher-precision

networks.

The neural states (yk) are coded in one to eight bits, whereas either eight or sixteen bits can

be used for the weights which are kept in a RAM. In order to save silicon area, the multiplications

wjkyj are serialised over the bits of yj, replacing N eight by eight bit parallel multipliers by N

eight bit AND gates. The partial products are saved and added in the tree of adders.
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The computation thus increases linearly with the number of neurons (instead of quadratic

in simulation on serial machines).

The activation function is, for reasons of 
exibility, kept o�-chip. The results of the weighted

sum calculation go o�-chip serially (i.e., bit by bit), and the result must be written back to the

neural state registers.

Finally, a column of latches is included to temporarily store memory values, such that during

a multiply of the weight with several bits the memory can be freely accessed. These latches in

fact take part in the learning mechanism described below.

Learning

The remaining parts in the chip are dedicated to the learning mechanism. The learning mecha-

nism is designed to implement the Hebbian learning rule (Hebb, 1949)

wjk  wjk + �kyj (11.2)

where �k is a scalar which only depends on the output neuron k. To simplify the circuitry,

eq. (11.2) is simpli�ed to

wjk  wjk + g(yk; yj)�k (11.3)

where g(yk; yj) can have value �1, 0, or +1. In e�ect, eq. (11.3) either increments or decrements
the wjk with �k, or keeps wjk unchanged. Thus eq. (11.2) can be simulated by executing eq. (11.3)

several times over the same set of weights.

The weights wk related to the output neuron k are all modi�ed in parallel. A learning step

proceeds as follows. Every learning processor (see �gure 11.5) LPj loads the weight wjk from

the synaptic memory, the �k from the learning register, and the neural state yj. Next, they

all modify their weights in parallel using eq. (11.3) and write the adapted weights back to the

synaptic memory, also in parallel.
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self-organising networks, 57

image compression, 98

vision, 98

self-supervised learning, 18, 87

semi-linear activation function, 17

sgn function, 23

sigma-pi unit, 16

sigma unit, 16

sigmoid activation function, 17, 36, 39

derivative of, 36

silicon retina, 105, 117

bipolar cells, 119

horizontal cells, 119

implementation, 119

photo-receptor, 118f.

SIMD, 111f.

simulated annealing, 54

simulation, 109

taxonomy, 109

specialised learning, 88

spurious stable states, 52

stable limit points, 51

stable neuron, 51

stable pattern, 51

stable state, 51

stable storage algorithm, 52

steepest descent, 91

convergence, 41

stochastic update, 17, 54

summed squared error, 28, 34

supervised learning, 18

synchronous update, 16

systolic, 114

systolic arrays, 111, 114

T
target, 28

temperature, 54

terminology, 19

test error, 43

Thinking Machines Corporation, 112

threshold, 19f.

topologies, 17

topology-conserving map, 57, 65, 109

training, 18

trajectory generation, 86

transistor, 118

transputer, 109, 111

travelling salesman problem, 53

energy, 53

triad synapses, 118

U
understanding back-propagation, 35f.

universal approximation theorem, 33

unsupervised learning, 18, 57f., 87

update of a unit, 15

asynchronous, 16, 50

stochastic, 54

synchronous, 16
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V
vector quantisation, 57f., 61

vision, 97

high level, 97

intermediate level, 97

low level, 97

W
Warp, 109, 111, 114

Widrow-Ho� rule, 18

winner-take-all, 58

X
XOR problem, 29f.


