
Stopped Training and Other Remedies for Over�tting

To appear in Proceedings of the 27th Symposium on the Interface, 1995

Warren S. Sarle

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513, USA

saswss@unx.sas.com

Abstract

Over�tting is the most serious problem in neural net-
work training; stopped training is the most common so-
lution to this problem. Yet the neural network literature
contains little systematic investigation of the properties

of stopped training and no comparisons with statistical
methods of dealing with over�tting. This paper presents
the results of simulations designed to investigate these
issues.

Introduction

The most important unresolved problem in practical ap-
plications of feedforward neural networks (NNs) is how
to determine the appropriate complexity of the network.
This problem is similar to the problem of choosing the
degree of smoothing in nonparametric estimation. But
over�tting in NNs can have much more serious conse-
quences than can undersmoothing in most nonparamet-
ric estimation methods. NNs, like high-order polynomi-
als, can produce wild predictions far beyond the range
of the data.

There are two main approaches to controlling the com-
plexity of a NN: model selection and regularization.

Model selection for a NN requires choosing the number
of hidden units (HUs) and connections thereof. Related
statistical problems include choosing the order of an au-
toregressive model and choosing a subset of predictors
in a linear regression model. The usual NN approach
to model selection is pruning (Reed 1993), in which you
start with a large model and remove connections or units
during training by various ad hoc algorithms. Pruning
is somewhat similar to backward elimination in stepwise
regression. Wald tests for pruning have been introduced
in the NN literature under the name Optimal Brain Sur-

geon by Hassibi and Stork (1993).

The usual statistical approach to model selection is
to estimate the generalization error for each model and
to choose the model with the minimum such estimate.
For nonlinear models, bootstrapping is generally the best

way to estimate the generalization error, but Schwarz's
Bayesian criterion (SBC) is reasonably e�ective and
much cheaper than bootstrapping. Previous unpub-
lished simulations showed that criteria such as AIC,
FPE, and GCV, which choose more complexmodels than
SBC, can over�t badly when applied to NNs.
Regularization involves constraining or penalizing the

solution of the estimation problem to improve generaliza-
tion by smoothing the predictions. Common NN meth-
ods for regularization include weight decay and addition
of noise to the inputs during training. Both of these
methods reduce to ridge regression in the case of linear
models. Other forms of statistical regularization include
Stein estimation and Bayesian estimation.

Stopped training

The most popular method of regularizing NNs, which
is called stopped training or early stopping or optimal

stopping, proceeds as follows:

1. Divide the available data into two separate training
and validation sets.

2. Use a large number of HUs.

3. Use small random initial values.

4. Use a slow learning rate.

5. Compute the validation error periodically during
training.

6. Stop training when the validation error \starts to
go up."

Stopped training is closely related to ridge regres-
sion. If the learning rate is su�ciently small, the se-
quence of weight vectors on each iteration will approxi-
mate the path of continuous steepest descent down the
error function. Stopped training chooses a point along
this path that optimizes an estimate of the generaliza-
tion error computed from the validation set. Ridge re-
gression also de�nes a path of weight vectors by varying

1



the ridge value. The ridge value is often chosen by opti-
mizing an estimate of the generalization error computed
by cross-validation, generalized cross-validation, or boot-
strapping. There always exists a positive ridge value that
will improve the expected generalization error in a linear
model. A similar result has been obtained for stopped
training in linear models (Wang, Venkatesh, and Judd
1994). In linear models, the ridge path lies close to, but
does not coincide with, the path of continuous steepest
descent; in nonlinear models, the two paths can diverge
widely.

Stopped training has several advantages:

� It is fast.

� It can be applied successfully to networks in which
the number of weights far exceeds the sample size.
For example, Nelson and Illingworth (1991, p. 165)
discuss training a network with 16,219 weights on
only 50 training cases!

� It requires only one major decision by the user:
what proportion of validation cases to use.

Statisticians tend to be skeptical of stopped training
because:

� It appears to be statistically ine�cient due to the
use of the split-sample technique; i.e., neither train-
ing nor validation makes use of the entire sample.

� The usual statistical theory does not apply.

However, there has been recent progress addressing both
of the above concerns (Wang 1994).

Despite the widespread use of stopped training, there
has been very little research on the subject. Most pub-
lished studies are seriously awed. For example, Morgan
and Bourlard (1990) generated arti�cial data sets in such
a way that the training set and validation set were corre-
lated, thus invalidating the results. Finnof, Hergert and
Zimmermann (1993) generated arti�cial data with uni-
formly distributed noise and then trained the networks
by least absolute values, a bizarre combination from a
statistical point of view (also see Weigend 1994 on least-
absolute-value training).

In one of the few useful studies on stopped training,

Weigend (1994) claims that:

1. \... fairly small [4HU] networks (that never reach
good performance) also, already, show over�tting."

2. \... large [15HU] networks generalize better than
small ones"

These conclusions are based on a single data set with
540 training cases, 540 validation cases, 160 inputs, and
a 6-category output, trained using the cross-entropy loss
function, initial values uniformly distributed between
�:01 and +:01, and a learning rate of .01 with no momen-
tum. A 4HU network has 674 weights, which is greater
than the number of training cases. Thus a 4HU network
is hardly \fairly small" relative to the training set size,
so (1) is not supported by Weigend's results.

Weigend's point (2) is clearly supported by the results,
but generalizing from a single case is risky!

Practical regularization

Ridge regression is the most popular statistical regular-
ization method. Ridge regression can be extended to
nonlinear models in a variety of ways:

� Penalized ridging, in which the estimation function
is augmented by a penalty term, usually equal to
the sum of squared weights; this method is called
weight decay in the NN literature.

� Smoothed ridging, in which noise is added to the
inputs, which amounts to an approximate convolu-
tion of the training data with the noise distribution;
this method is used in the NN literature but does
not have a widely recognized name.

� Constrained ridging, in which a norm of the weights
is constrained not to exceed a speci�ed value; this
method has not appeared in the NN literature to
my knowledge.

Penalized ridging has the clearest motivation, be-
ing a form of maximum-posterior-density (MPD)
Bayesian estimation in which the weights are distributed
N(0; ridge�I). The Bayesian approach has the great ad-
vantage of providing a natural way to estimate the ridge
value: you make the ridge value a hyperparameter and
estimate it along with everything else. Typically, the
ridge value is given a noninformative prior distribution.

Full Bayesian estimation has been found very e�ec-
tive for NN training (Neal 1995) but is prohibitively
expensive except for small data sets. Empirical Bayes
methods (called the evidence framework in the NN lit-
erature, MacKay 199?), in which you �rst estimate the
ridge value by integrating over the weights, are also ef-
fective but still expensive. Williams (1995) suggested
�rst integrating over the ridge value and then maximiz-
ing with respect to the weights. This method is very
e�cient since the integration can be done analytically,
but the global optimum is in�nite, with all the weights

2



equal to zero, a solution that is rarely of much practical
use.

Hierarchical Bayesian models with noninformative hy-
perprior distributions generally have an in�nite poste-
rior density along a ridge corresponding to a variance of
zero for the hyperparameters. Sometimes there is a local
maximumof the posterior density that yields an approx-
imation to a full Bayesian analysis, but there is often
only a shoulder rather than a local maximum (O'Hagan
1985).

For Bayesian estimation to be competitive with
stopped training for practical applications, a computa-
tionally e�cient approach is required. One simple and
fast approach is to maximize the posterior density with
respect to both the weights and the ridge value, using
a slightly informative prior for the ridge value. A suf-
�ciently informative prior will convert a shoulder into
a local maximum, but how much prior information is
required depends on the particular application.

The maximumposterior density approach yields a sin-
gle model equation, so predictions can be computed
quickly. But MPD estimation can be statistically in-
e�cient compared to full Bayesian estimation in small
samples when the mode of the posterior density is not
representative of the entire posterior distribution. Hence
the usefulness of MPD estimation in small samples re-
quires investigation.

Simulations

NNs are typically used with many inputs. But it is di�-
cult to comprehend the nature of high-dimensional func-
tions. The simulations presented in this paper were run
using functions of a single input to make it possible to
plot the estimated functions.

Six functions were used, named at, line, curve, wig-

gle, saw, and step. Each �gure at the end of this paper is
devoted to one of these functions. Data were generated
by selecting an input value from a uniform distribution
on [�2; 2] and adding Gaussian noise with standard de-
viation sigma as shown in the �gures. Fifty samples were
generated from the saw function, while twenty samples
were generated from each of the other functions.

The �gures are composed of four quadrants containing
the following plots:

Upper left: The true regression function, pooled data
from all samples, and separate data from each of the
�rst two samples.

Upper right: The estimated regression functions for
each sample with each of four estimation methods:

� SBC: Ordinary least squares with the number
of HUs chosen by Schwarz's Bayesian criterion.

� DG: Ordinary least squares with the number of
HUs chosen by Divine Guidance, i.e. the true
generalization error.

� MPD: Maximum posterior density with 10
HUs and a slightly informative prior.

� Stopped training with 20 HUs and 25% valida-
tion cases.

Lower left: The mean MSE of prediction (above) and
the median MSE of prediction (below) as functions
of the number of HUs (on the left) and the percent-
age of validation cases (on the right).

Lower right: Box-and-whisker plots of the MSE of pre-
diction for each estimation method.

In all simulations, the HUs had logistic activation
functions and the output unit had an identity activation
function.
Stopped training was done with 5, 10, 20, or 40 HUs.

Each sample was randomly split into training and val-
idation sets. The network was trained to convergence
by a conjugate gradient algorithm. The validation error
was computed on each iteration, and the weights that
minimized the validation error were used to compute
the estimated functions. This approach circumvents the
question of when the validation error \starts to go up."
OLS and MPD estimation were done by a Levenberg-

Marquardt algorithm. Ten HUs were used for MPD es-
timation.
Generalization error was estimated by computing the

MSE for predicting the mean response for 201 data
points evenly spaced from -2 to 2, which gives a close
approximation to the mean integrated squared error.
Since the distribution of the MSE of prediction

is highly skewed and possibly multimodal, a rank-
transform analysis of variance was used to evaluate the
e�ects of the number of HUs and the validation percent-
age and to compare estimation methods. Since this is a
small, exploratory study, no adjustments were made for
multiple tests. Results are summarized in terms of the
conventional 5% level of signi�cance.
There was no signi�cant interaction between the num-

ber of HUs and the validation percentage for any of the
functions.
The number of HUs had no signi�cant e�ect on the

generalization of stopped training for the at or step
functions. For the line function, 40 HUs generalized sig-
ni�cantly better than 5 or 10 HUs. For the other func-
tions, 20 HUs were better than 5 or 10 HUs. For the saw
function, 40 HUs generalized signi�cantly worse than 20

3



HUs. For the other functions, the di�erence between 20
and 40 HUs was not signi�cant.

The e�ect of validation percentage on stopped train-
ing was not as clear-cut as the e�ect of the number of
HUs. For the at function, 33% validation cases general-
ized best but not signi�cantly better than any other per-
centage except 14%. For the line function, the e�ect of
validation percentage was not signi�cant. For the curve
function, 25% was best but was not signi�cantly better
than any other percentage except 10%. For the wiggle
function, 14% was nonsigni�cantly better than 20% and
signi�cantly better than any other validation percentage.
For the saw function, 14% was best but was not signi�-
cantly better than any other percentage except 50%. For
the step function, 50% was signi�cantly worse than any
other percentage. Thus the data suggest a trend in which

the more complex functions require a smaller validation
percentage, but the results are far from conclusive.

To compare stopped training with the other methods,
20 HUs and 25% validation cases were chosen to give
good results for all �ve functions.

Of the three practical methods (DG is not, of course,
practical), SBC was signi�cantly best for the at and line
functions, but MPD was best for the other functions, sig-
ni�cantly so for the wiggle and saw functions. For the
curve and step functions, MPD was signi�cantly better
than stopped training but not signi�cantly better than
SBC. For the at function, MPD was signi�cantly worse
than SBC or stopped training, while SBC and stopped
training did not di�er signi�cantly. For the line function,
both MPD and stopped training were signi�cantly worse
than SBC, but MPD and stopped training did not di�er
signi�cantly from each other. Thus, for applications in
which nonlinear relationships are anticipated, MPD is
clearly the method of choice. Ironically, stopped train-
ing, which is touted as a fool-proof method for �tting
complicated nonlinear functions, works well compared
to MPD only for the two linear functions.

DG was signi�cantly better than MPD for the at and
line functions and was extremely close to MPD for the
other functions, so improved methods of model selection
deserve further investigation. However, DG sometimes
yields estimates with near discontinuities for all six func-
tions, and for some applications this tendency could be
a disadvantage. It is interesting that for the step func-
tion, SBC appears to the human eye to produce better
estimates than DG. But even though SBC detects the
discontinuities reliably, it does not position them accu-
rately.

References

Bernardo, J.M., DeGroot, M.H., Lindley, D.V. and
Smith, A.F.M., eds., (1985), Bayesian Statistics 2,

Amsterdam: Elsevier Science Publishers B.V. (North-
Holland).
Finnof, W., Hergert, F., and Zimmermann, H.G.

(1993), \Improving model selection by nonconvergent
methods," Neural Networks, 6, 771-783.
Hassibi, B. and Stork, D.G. (1993), \Second order

derivatives for network pruning: Optimal Brain Sur-
geon," Advances in Neural Information Processing Sys-

tems, 5, 164-171.
MacKay, D.J.C. (199?), \Probable

networks and plausible predictions|a review of prac-
tical Bayesian methods for supervised neural networks,"
ftp://mraos.ra.phy.cam.ac.uk/pub/mackay/network.ps.Z

Morgan, N. and Bourlard, H. (1990), \Generalization
and parameter estimation in feedforward nets: Some ex-
periments," Advances in Neural Information Processing

Systems, 2, 630-637.
Neal, R.M. (1995), Bayesian Learning for Neu-

ral Networks, Ph.D. thesis, University of Toronto,
ftp://ftp.cs.toronto.edu/pub/radford/thesis.ps.Z
Nelson, M.C. and Illingworth, W.T. (1991), A Practi-

cal Guide to Neural Nets, Reading, MA: Addison-Wesley.
O'Hagan, A. (1985), \Shoulders in hierarchical mod-

els," in Bernardo et al. (1985), 697-710.
Reed, R. (1993), \Pruning Algorithms|A Survey,"

IEEE Transactions on Neural Networks, 4, 740-747.
Wang, C. (1994), A Theory of Generalisation in

Learning Machines with Neural Network Application,
Ph.D. thesis, University of Pennsylvania.
Wang, C., Venkatesh, S.S., and Judd, J.S. (1994),

\Optimal Stopping and E�ective Machine Complexity
in Learning," Advances in Neural Information Process-

ing Systems, 6, 303-310.
Weigend, A. (1994), \On over�tting and the e�ective

number of hidden units," Proceedings of the 1993 Con-

nectionist Models Summer School, 335-342.
Williams, P.M. (1995), \Bayesian regularization and

pruning using a Laplace prior," Neural Computation, 7,
117-143.

4



Figure 1

5



Figure 2

6



Figure 3

7



Figure 4

8



Figure 5

9



Figure 6

10


